УДК 579.864

Л. В. Устюжанинова, В. И. Сушкова

ИССЛЕДОВАНИЕ ЭФФЕКТИВНОСТИ ЦЕНТРИФУГИРОВАНИЯ СУСПЕНЗИИ ЛАКТОБАКТЕРИЙ, ВЫРАЩЕННЫХ НА ФЕРМЕНТОЛИЗАТЕ ОТРУБЕЙ

При производстве пробиотических и синбиотических препаратов важно получить продукт с максимальным количеством жизнеспособных клеток бактерий-пробиотиков. Поэтому при разработке технологии данных производств необходимо исследовать эффективность разных режимов концентрирования продукта для выбора оптимального. В данной работе эффективность центрифугирования оценивалась по количеству живых клеток лактобактерий и количеству абсолютно сухих веществ, перешедших из суспензии в концентрат. Результаты исследования показали, что наиболее эффективным оказалось центрифугирование при 3600 об/мин на центрифуге Centra-CL2. Увеличение скорости вращения (до 6000 об/мин) приводило к гибели части клеток лактобактерий. Полученные данные могут быть полезны исследователям и разработчикам технологий получения препаратов, содержащих живые лактобактерии.

Ключевые слова: концентрирование, центрифугирование, лактобактерии, ферментолизат отрубей.

В настоящее время в животноводстве и птицеводстве для профилактики и лечения различных инфекционных заболеваний желудочно-кишечного тракта всё чаще применяются пробиотики и синбиотики [1]. При производстве пробиотических и синбиотических препаратов важно получить продукт с максимальным количеством жизнеспособных клеток бактерий. Поэтому при разработке технологии необходимо исследовать эффективность разных режимов всех стадий производства для выбора оптимального, который бы обеспечил максимальное сохранение живых микроорганизмов-пробиотиков.

Ранее нами была предложена технология производства кормовых синбиотиков и синбиотических добавок на основе пшеничных отрубей с

[©] Устюжанинова Л. В., Сушкова В. И., 2017

использованием лактобактерий [2]. Одной из стадий производства является концентрирование суспензии лактобактерий. Поэтому целью данной работы было исследование эффективности разных режимов центрифугирования суспензии лактобактерий, выращенных на ферментолизате отрубей, и выбор оптимального режима.

В качестве объектов исследования были взяты 3 штамма лактобактерий, приобретённые из Всероссийской Коллекции Промышленных Микроорганизмов (ВКПМ) при ФГУП ГосНИИГенетика: Lactobacillus casei ВКПМ В-4990, Lactobacillus acidophilus ВКПМ В-4992 и Lactobacillus acidophilus ВКПМ В-2991, выделенные из пищеварительного тракта здорового поросёнка, телёнка и курицы соответственно. Согласно паспортам, все штаммы устойчивы к ряду антибиотиков, генетически не модифицированы, не патогенны для человека, при работе не требуют специальных мер предосторожности. Данные штаммы обладают явно выраженными пробиотическими свойствами, в том числе высокой антагонистической активностью и кислотообразующей способностью [2].

Ферментолизат отрубей готовили следующим образом [3]. Пшеничные отруби смешивали с водой в соотношении по массе 1:10, кипятили 15 мин, охлаждали до 55 °C, доводили значение рН до 4,7-5,0 добавлением концентрированной соляной кислоты. Затем добавляли ферментные препараты Амилосубтилин ГЗХ, Глюкаваморин ГЗХ и Оптимаштм ВG в количестве 1,0 г/кг условного крахмала; 0,8 г/кг условного крахмала и 0,05 г/кг сухих веществ соответственно. Ферментируемую смесь выдерживали на водяной бане при температуре 55 °C 2 часа, периодически перемешивая. Затем доводили рН ферментолизата до 7,0–7,2 раствором NаOH, добавляли мочевину в количестве 0,02 г/дм³ и стерилизовали при 1 ати в течение 40 минут.

Культивирование осуществляли в микроаэрофильных условиях в термостате TC-80M-2 во флаконах объемом 250 и 500 см³, содержащих по 150 и 300 см³ ферментолизата отрубей соответственно, при температуре 37 °C и рН среды 6,0–7,0 в течение 8–24 часов. Статирование рН производили периодическим

добавлением в культуральную жидкость 2 н раствора NaOH. Значение pH определяли с помощью pH-метра pH-410 (Аквилон, Россия).

Центрифугирование осуществляли при комнатной температуре (20–22°C) на центрифугах Centra-CL2 (Thermo Electron Corporation, США) при 1000, 3000 и 3600 об/мин и SIGMA 3-16PK (Sigma Laborzentrifugen GmbH, Германия) при 6000 об/мин. Время центрифугирования составляло 10 мин во всех случаях.

Количество жизнеспособных клеток лактобактерий в 1 см³ бактериальной суспензии для анализа определяли чашечным методом Коха [4] на среде Лактобакагар (ФБУН ГНЦ Прикладной микробиологии и биотехнологии, г. Оболенск). Суспензию для анализа готовили следующим образом: при соблюдении правил асептики отбирали навеску исследуемого образца массой около 1 г (точную массу записывали с точностью до 0,01 г), добавляли 100 см³ стерильного физраствора и тщательно перемешивали. Концентрацию живых лактобактерий в исходных образцах рассчитывали с учётом массы навески и объёма физраствора, взятого для её суспендирования (100 см³).

Количество абсолютно сухих веществ (ACB) рассчитывали по влажности продукта, которую определяли методом высушивания навески до постоянной массы при 100-105 °C по ГОСТ 13496.3-92 [5].

Результаты исследования эффективности центрифугирования суспензии лактобактерий штамма *Lactobacillus casei* ВКПМ В-4990, полученной после ферментации на ферментолизате отрубей, представлены в таблицах 1-2.

По данным таблиц 1 и 2 видно, что наиболее эффективным оказалось центрифугирование при 3600 об/мин на центрифуге Centra-CL2 (на данной центрифуге это максимальная скорость вращения пробирок объёмом 50 см³). В концентрат из исходной суспензии перешло более 90% жизнеспособных клеток лактобактерий штамма *L. casei* ВКПМ В-4990. При этом содержание живых клеток в концентрате по сравнению с исходной суспензией увеличилось в 1,9-4,4 раза.

2017. № 1. Advanced science

Биологические науки

В концентрат перешло от 52,1% до 91,9% ACB из исходной суспензии. При этом при увеличении времени ферментации лактобактерий увеличивается доля ACB, перешедших в концентрате из исходной суспензии после центрифугирования при всех исследованных режимах (табл. 1-2). Возможно, это связано с уменьшением концентрации растворимых питательных веществ в культуральной жидкости во время ферментации вследствие их ассимиляции. Содержание ACB в концентрате по сравнению с исходной суспензией увеличивалась примерно в 2 раза во всех случаях независимо от времени культивирования.

Таблица 1
Эффективность центрифугирования суспензии лактобактерий штамма
Lactobacillus casei ВКПМ В-4990 после ферментации на ферментолизате отрубей в течение 12–24 часов

Время культивирования, ч	12		20	24	
Скорость вращения, об/мин	1000	3000	1000	3600	6000
Фактор разделения	167,6	1507,6	167,6	2170,9	3819,2
Концентрация живых клеток в ис- ходной суспензии, ×10 ⁹ КОЕ/г	1,3±0,2		1,2±0,1	1,0±0,1	0,9±0,1
Концентрация живых клеток в концентрате, $\times 10^9$ КОЕ/г	1,6±0,3	3,1±0,2	1,5±0,4	2,0±0,2	1,0±0,2
Доля живых клеток в концентрате от живых клеток в исходной суспензии, %	50,4	91,5	53,5	96,7	71,7
АСВ в исходной суспензии, %	7,7	7,9	8,3	8,8	8,8
АСВ в концентрате, %	11,5	14,1	12,5	16,0	12,7
Доля ACB в концентрате от ACB в исходной суспензии, %	60,00	65,94	67,61	91,94	90,36

Таблица 2

Эффективность центрифугирования суспензии лактобактерий штамма *Lactobacillus casei* ВКПМ В-4990 после ферментации на ферментолизате отрубей в течение 8–12 часов

				ı					
Время культи-	8			12					
вирования, ч									
Скорость враще-	1000	3600	6000	1000	3600	6000	3600	6000	
ния, об/мин	1000	3000	0000	1000	3000	0000	3000	0000	
Фактор разделе-	167,6	2170,9	3819,2	167,6	2170,9	3819,2	2170,9	3819,2	
ния	107,0	2170,7	3017,2	107,0	2170,7	3017,2	2170,5	3017,2	
Концентрация жи-									
вых клеток в ис-	1,5±0,2			1,1±0,2			0,8±0,1		
ходной суспензии,									
×10 ⁹ ΚΟΕ/Γ									
Концентрация жи-									
вых клеток в кон-	2,0	6,7	1,7	1,6	2,5	1,5	2,3	1,3	
центрате, ×109	$\pm 0,4$	±0,8	±0,3	±0,3	±0,5	±0,4	±0,3	±0,3	
КОЕ/г									
Доля живых кле-									
ток в концентрате									
от живых клеток в	42,4	99,8	40,3	69,7	99,3	77,4	92,8	69,8	
исходной суспен-									
зии, %									
АСВ в исходной	7,5			8,4			7,9		
суспензии, %					0,4	7,9			
АСВ в концентра-	12.4	17.0	11 /	12.0	15 /	12.2	16 1	12.2	
те, %	12,4	17,0	11,4	13,0	15,4	12,2	16,1	12,2	
Доля АСВ в кон-									
центрате от АСВ в	52.0	52.1	56,7	72.5	77.0	78,9	63.7	62.5	
исходной суспен-	52,9	52,1	50,7	72,5	77,9	10,9	63,7	62,5	
зии, %									
			•						

2017. № 1. Advanced science

Биологические науки

Концентрирование при 1000 об/мин на центрифуге Centra-CL2, а также при 6000 об/мин на центрифуге SIGMA 3-16PK оказалось менее эффективным: в концентрат перешло только 30,5-50,4% и 40,3-77,4% живых клеток соответственно. Поэтому концентрация жизнеспособных клеток лактобактерий в концентрате увеличилась незначительно по сравнению с исходной суспензией. При концентрировании на данных скоростях масса полученного концентрата была больше, чем при центрифугировании на скорости 3600 об/мин, но с меньшим содержанием АСВ. Поэтому при расчёте доли АСВ, перешедших в концентрат, полученные значения в большинстве случаев мало отличаются для разных режимов концентрирования одной и той же суспензии лактобактерий штамма *L. саѕеі* ВКПМ В-4990 (табл. 1-2).

При концентрировании на центрифуге Centra-CL2 при 3000 об/мин эффективность процесса была выше, чем при центрифугировании на скорости 1000 об/мин, но несколько ниже, чем при концентрировании на скорости 3600 об/мин (табл. 1).

Также была исследована эффективность центрифугирования суспензий лактобактерий штаммов *Lactobacillus acidophilus* ВКПМ В-4992 и *Lactobacillus acidophilus* ВКПМ В-2991 на ферментолизате отрубей, полученных после 8 часов ферментации. Результаты представлены в таблице 3.

Таблица 3
Эффективность центрифугирования суспензии лактобактерий штаммов
Lactobacillus acidophilus ВКПМ В-4992 и Lactobacillus acidophilus ВКПМ В2991 после 8 часов ферментации на ферментолизате отрубей

	Lactobacili	lus acidophi	lus ВКПМ	Lactobacillus acidophilus ВКПМ			
Штамм лактобактерий	B-4992			B-2991			
Скорость вращения, об/мин	1000	3600	6000	1000	3600	6000	
Фактор разделения	167,6	2170,9	3819,2	167,6	2170,9	3819,2	

2017. № 1. Advanced science Биологические науки

Концентрация живых клеток в исходной сус-пензии, ×10 ⁸ КОЕ/г	3,6±0,9			1,1±0,6			
Концентрация живых клеток в концентрате, $\times 10^8 \ {\rm KOE/\Gamma}$	3,6 ±0,3	10,7 ±1,3	6,4 ±0,2	3,0 ±0,4	3,4 ±0,4	2,1 ±0,7	
Доля живых клеток в концентрате от живых клеток в исходной суспензии, %	45,7	96,5	93,0	94,7	95,8	78,8	
ACB в исходной суспен- зии, %	8,9			8,1			
АСВ в концентрате, %	13,0	18,0	12,4	13,1	15,8	13,0	
Доля АСВ в концентрате от АСВ в исходной сус-пензии, %	66,1	65,0	72,8	57,1	60,5	65,8	

По данным таблицы 3 видно, что наиболее эффективным оказалось центрифугирование на центрифуге Centra-CL2 при 3600 об/мин. В концентрат из исходной суспензии перешло 96,5% живых клеток лактобактерий штамма *L. acidophilus* ВКПМ В-4992 и 95,8% живых клеток лактобактерий штамма *L. acidophilus* ВКПМ В-2991. При этом концентрация живых клеток в концентрате по сравнению с исходной суспензией увеличивалась в 3 раза. Также в концентрат из исходной суспензии перешло 65,0% и 60,5% АСВ для указанных двух штаммов соответственно. При этом доля АСВ в концентрате по сравнению с исходной суспензией увеличивалась примерно в 2 раза.

При концентрировании суспензии лактобактерий штамма *L. acidophilus* ВКПМ В-4992 при 1000 об/мин наблюдалась очень низкая эффективность процесса: только 45,7% живых клеток перешло в концентрат, поэтому концентрация жизнеспособных клеток лактобактерий в концентрате не увеличилась по сравнению с исходной суспензией. Клетки данного штамма лактобактерий

практически не осаждались на указанной скорости из-за своего очень маленького размера. В свою очередь, клетки лактобактерий штамма *L. acidophilus* ВКПМ В-2991, которые по размерам заметно больше клеток лактобактерий штаммов *L. casei* ВКПМ В-4990 и *L. acidophilus* ВКПМ В-4992, хорошо осаждались уже при 1000 об/мин (табл. 3).

При концентрировании суспензии лактобактерий штаммов *L. acidophilus* ВКПМ В-4992 и *L. acidophilus* ВКПМ В-2991 на скоростях 1000 об/мин и 6000 об/мин масса полученных концентратов была больше, чем при центрифугировании на скорости 3600 об/мин, но с меньшим содержанием АСВ.

В случае всех трёх штаммов фугат, полученный после центрифугирования при 6000 об/мин содержал живых клеток не больше, чем фугат, полученный после центрифугирования при 3600 об/мин. Таким образом, пониженное содержание жизнеспособных клеток лактобактерий в концентрате после центрифугирования при 6000 об/мин (табл. 1-3) можно объяснить только гибелью части клеток из-за воздействия центробежной силы. Более устойчивыми оказались клетки лактобактерий штамма *L. acidophilus* ВКПМ В-4992 (табл. 3), имеющие наименьший размер по сравнению с остальными исследованными штаммами.

Таким образом, концентрирование суспензии лактобактерий всех трёх исследуемых штаммов на ферментолизате отрубей оказалось наиболее эффективным при центрифугировании в центрифуге Centra-CL2 на скорости 3600 оборотах в минуту. При этом концентрация живых лактобактерий увеличивалась в 1,9–4,4 раза по сравнению с исходной суспензией. Полученный концентрат содержал 15,4–18,0% АСВ. Увеличение скорости вращения (до 6000 об/мин) приводило к гибели части клеток лактобактерий. Центрифугирование при 1000 об/мин не позволяло достаточно эффективно отделить клетки штаммов *L. casei* ВКПМ В-4990 и *L. acidophilus* ВКПМ В-4992, обладающих небольшими размерами.

Список литературы

- 1. Панин А. Н., Малик Н. И. Пробиотики неотъемлемый компонент рационального кормления животных // Ветеринария. 2006. № 7. С. 3—6.
- 2. Устюжанинова Л. В., Сушкова В. И. Технология производства кормовых синбиотических продуктов // Современные тенденции в сельском хозяйстве : сб. трудов I междунар. интернет-конф. / отв. ред. Е. Д. Изотова. Казань : Изд-во «Казанский университет», 2012. С. 190–196.
- 3. *Устьюжанинова Л. В., Сушкова В. И.* Получение кормовых пробиотиков на основе ферментолизата отрубей // Новые достижения в химии и химической технологии растительного сырья : материалы V Всерос. конф. / под ред. Н. Г. Базарновой, В. И. Маркина. Барнаул : Изд-во Алт. ун-та, 2012. С. 523–525.
- 4. Руководство по практическим занятиям по микробиологии : учеб. пособие / под. ред. Н. С. Егорова. 3-е изд., перераб. и доп. М. : Изд-во МГУ, 1995. 224 с.
- 5. ГОСТ 13496.3–92. Комбикорма, комбикормовое сырье. Методы определения влаги. М. : Стандартинформ, 2011.-4 с.

СУШКОВА Валентина Ивановна – профессор кафедры биотехнологии, Вятский государственный университет. 610000, г. Киров, ул. Московская, 36.

E-mail: usr00410@vyatsu.ru

УСТЮЖАНИНОВА Людмила Васильевна — инженер кафедры биотехнологии, Вятский государственный университет. 610000, г. Киров, ул. Московская, 36.

E-mail: lv_ustyuzhaninova@vyatsu.ru