УДК 377

DOI 10.25730/VSU.0536.20.010

Об актуальности реализации дискретной линии в цифровизации профессионального образования

Е. А. Перминов

доктор педагогических наук, профессор кафедры математических и естественнонаучных дисциплин Российского государственного профессионально-педагогического университета.

Россия, г. Екатеринбург. E-mail: perminov_ea@mail.ru

Аннотация. Анализируется фундаментальная роль современной дискретной математики в цифровизации профессионального образования и обосновывается ее важное значение в повышении уровня информационной культуры студентов.

Ключевые слова: профессиональное образование, цифровизация, реализация дискретной линии.

В начавшуюся эпоху цифрового мира и общества в исследованиях самых различных областей научного знания широкое распространение получила современная дискретная математика (ДМ), известная также под названиями конечная, компьютерная, конкретная математика и дискретный анализ [6]. Идеи и методы дискретной математики имеют фундаментальное значение в современной методологии моделирования, в основе которой реализация этапов решения задач с использованием компьютера: постановка возникающих задач, их перевод на адекватный научный язык, рациональная разработка моделей исследуемых объектов или явлений, а также эффективных алгоритмов и компьютерных программ для решения задач на основе разработанных моделей. Поэтому ДМ стала математической основой использования уникальных возможностей компьютера на разных этапах решения задач в самых различных отраслях науки и производства.

В свое время один из основоположников информатики В. М. Глушков указывал, что математика в начале XXI в. «будет в большей мере математика дискретных, а не непрерывных величин» [2, с. 122]. Поэтому широкое распространение идей и методов ДМ как в математике, так и во многих других науках привело к тому, что предмет «Дискретная математика» или «Основы ДМ» с 1995 г. стал постепенно включаться в государственные стандарты высшего профессионального образования по многим специальностям из подавляющего большинства направлений подготовки.

Анализ трудов одного из основателей информатики А. П. Ершова [3] показывает, что современная дискретная математика стала основой языка информационных технологий и процессов, породивших современный цифровой мир и общество. Об этом же свидетельствует анализ тематики журналов «Дискретный анализ и исследование операций», «Прикладная дискретная математика» [6, с. 45]. В частности, в разработке и совершенствовании информационных технологий определяющую роль играют разделы «Теория автоматов», «Теория функциональных систем», «Синтез и сложность управляющих систем».

Особенно важно, что знание языка и инструментария ДМ необходимо для рациональной и корректной разработки и использования информационных технологий, в которых нередко можно обнаружить бесполезную, искаженную и даже ложную информацию (так называемые «информационные шумы»). Не случайно А. П. Ершов подчеркивал базовую роль ДМ в доведении системы «законов обработки информации до той же степени стройности и заразительности, какой сейчас обладает курс математического анализа, читаемый в лучших университетах» [3, с. 294].

Таким образом, идеи и методы ДМ имеют фундаментальное значение в цифровизации науки и, как следствие, в цифровизации образования, что, по сути, свидетельствует о начале новой цифровой эпохи в области познания и практической деятельности человечества, порожденной «компьютерной» революцией.

Как известно, в процессе информатизации образования часто можно обнаружить чрезмерное увлечение технической стороной проблемы, не учитывающей культурологические аспекты образования. Поэтому в переходе от информатизации к последующей цифровизации образования, как представляется, основной идеологемой является то, что образование оказалось между двумя понятиями: цивилизация и культура. Парадокс «заключается в том, что цивилизационные взлеты часто приводят к падению культуры: наподобие двух плечей рычага. Взлетает вверх одно, падает вниз другое. Не случайно же говорят, что деградация древнего Рима началась с того, что он стал мыслить желудком ("детерминизм прямой кишки"). То же самое происходит и сейчас» [12, с. 38].

[©] Перминов Е. А., 2020

О недостаточно высокой культуре цифровизации профессионального образования и, как следствие, о его цифровой тривилизации (упрощении) [12] свидетельствуют многочисленные диспропорции между фундаментализацией и внедрением информационно-коммуникационных технологий в условиях коммерциализации образования. В таких условиях повсеместное стремление к получению знания в условиях разрастания количества образовательных учреждений (предлагающих обучающие программы) нередко приводит к удешевлению предлагаемого будущим учащимся цифрового образовательного «продукта», что часто влечет некорректное упрощение его содержания и комплектации. Все это может стать причиной недостаточно высокой культуры цифровизации учебного процесса, которая создает предпосылки обесценивания знания.

В преодолении перечисленных недостатков цифровизации профессионального образования следует исходить из того, что ДМ имеет важное значение в повышении уровня цифровой адекватности личности в виртуальном мире, поскольку она является математической основой языка корректного отображения этого мира в сознании человека и, более того, формирования его информационной культуры.

Действительно, в преодолении сформировавшихся в процессе цифровизации жизни общества негативных особенностей мышления многочисленных представителей сетевого поколения (с присущим им фрагментарно-клиповым сознанием [10]) фундаментально значение доминирующих в ДМ алгебраических, порядковых структур и логических, алгоритмических, комбинаторных схем (в общенаучной терминологии способов, методов исследования). Эти структуры и схемы лежат в основе систематизации, классификации, упорядочивании всего, что известно по интересующей проблеме, ее структуризации, представлении имеющихся знаний в виде, оптимальном для последующего их анализа с использованием компьютера [6]. Перечисленные структуры и схемы ДМ являются математической основой формирования в мышлении учащихся когнитивных (познавательных) структур и схем, являющихся их отражением. Как обосновано в [13], их формирование необходимо начинать уже с 11-12-летнего возраста.

В работе [7] установлено, что эти когнитивные структуры и схемы имеют фундаментальное значение в формировании структуры интеллектуальных операций в мышлении, лежащей в основе функционирования выявленного и исследованного выдающимся ученым-психологом Я. А. Пономаревым психологического механизма решения профессиональных задач [8]. Формирование структуры интеллектуальных операций особенно важно в развитии у субъекта образования его информационной культуры, критического мышления и отношения к информации. Поэтому не случайно, что субъект с несформированными в его мышлении интеллектуальными операциями не может ориентироваться в джунглях виртуального мира, выбирать необходимые ему ресурсы цифровизации, не умеет работать с ними, не может понять и оценить их содержание.

Важно также учесть, что язык современной дискретной математики лежит в основе автоматизации и роботизации производства и формирования искусственного интеллекта. Доля автоматизированных процессов в производстве и логистике достигнет к 2035 г. 95 %, а 50–70 % нынешних рабочих мест в этой сфере перестанут существовать [4]. Поэтому ДМ имеет фундаментальное значение в подготовке студентов к грядущим трансформациям рынков труда, связанных с вытеснением репродуктивных и алгоритмизируемых (в первую очередь рутинных) видов профессиональной деятельности. Таким образом, профильное обучение ДМ играет важную роль в подготовке *профессионально мобильных* выпускников вузов, позволяющую им переходить от выполнения одних производственных функций к другим и даже менять профессию или занятость.

В условиях лавинообразно увеличивающейся научной информации в подготовке профессионально мобильных выпускников вузов получил широкое распространение междисциплинарный подход, основанный на углублении связей образования с наукой. Как следует из анализа трудов В. М. Глушкова и А. П. Ершова [6], в реализации междисциплинарного подхода важную роль играет дискретная математика как основа междисциплинарных связей математики и информатики. Поэтому ДМ имеет фундаментальное значение в разработке междисциплинарных производственных технологий на основе методологии моделирования с использованием компьютера. Это является еще одним доводом в пользу того, что идеи и методы ДМ должны найти достойное отражение в цифровизации профессионального образования. Особенно – в цифровизации обучения математике и информатике студентов направлений подготовки для высокотехнологичных отраслей производства.

Анализ охарактеризованных аспектов реализации дискретной линии в цифровизации профессионального образования показывает, что цифровизация, скорее всего, приведет к формированию цифровой психологии, цифровой педагогики, цифровой дидактики и методики обучения. В частности, в формировании цифровой дидактики и методики обучения математике фундаментально значение цифровой математической образовательной среды. В этой цифровой среде должна

быть отражена совокупность всех традиционных дидактических элементов обучения ДМ без какой-либо принципиальной их трансформации. Эти элементы являются основой разработки оптимальной информационной модели предметной области математики, изучаемой студентами в рамках их направления подготовки. Как следует из изложенного, в процессе когнитивной структуризации и формализованного описания этой модели должны быть адекватно отражены понятия языка доминирующих в ДМ структур и схем.

В реализации дискретной линии в формировании *цифровой дидактики и методики обучения* математике особенно важной целью является формирование умений различать, что можно и что нельзя сделать с помощью компьютера в решении профессиональных задач. В формировании таких умений в условиях замкнутости типичных представителей цифрового поколения в виртуальном, сетевом мире особенно важной становится профессиональная функция педагога как навигатора в мире профессиональной информации. При этом востребованными становятся, прежде всего, компетенции педагога, обеспечивающие постановку задач, которые можно решать с помощью компьютера (а также других цифровых устройств).

В связи с этим также следует учесть, что в современном цифровом мире и обществе уже доминирует тенденция: чем больше использует та или иная компания информационные технологии, тем больше требований предъявляет она к профессиональному уровню работников. Это является еще одни весомым подтверждением уже отмеченной ранее фундаментальной роли ДМ в цифровизации профессионального образования как основы языка информационных технологий и процессов.

К сожалению, среди авторов цифровых образовательных «продуктов» немало тех, кто в своей инновационной деятельности не имеет необходимых представлений о роли дискретной математики в цифровизации профессионального образования. Поэтому они не обладают достаточной информационной культурой для того, чтобы быть навигаторами в мире профессиональной информации, важной в подготовке студентов в эпоху цифрового мира и общества.

Несомненно, информационную культуру необходимо формировать уже со школьной скамьи. Как показывает анализ содержания ФГОС полного (общего) образования [11], с этой целью в нем уже предусмотрена реализация дискретной линии в содержании профильного обучения математике и информатике. Например, в изучении предмета «Информатика (углубленный уровень)» предусмотрено формирование «представлений о важнейших видах дискретных объектов и об их простейших свойствах, алгоритмах анализа этих объектов», а также систематизация «знаний, относящихся к математическим объектам информатики» [там же, с. 18].

Отметим, что для изучения математических объектов информатики и дискретных объектов в школе уже изданы учебные пособия [1; 5], которые могут способствовать формированию важных элементов математической и информационной культуры учащихся, что особенно актуально в условиях цифровизации образования.

В пособии [1], раскрывающем для учащихся взаимосвязь математики и информатики, дается углубленное представление о математическом аппарате, используемом в информатике, показывается, как теоретически результаты, полученные в математике, послужили источником новых идей и результатов в теории алгоритмов, программировании и в других разделах информатики. В свою очередь, в содержании пособия [5] отражена ведущая роль ДМ как фундаментальной области математики, без знания которой невозможно наилучшим образом научиться решать задачи на компьютере. Поэтому в его содержании нашли отражение элементы языка доминирующих в дискретной математике структур и схем, посильные восприятию учащихся и важные в формировании структуры интеллектуальных операций в их мышлении и тем самым в преодолении негативных особенностей воздействия на них сети Интернет.

В профильном обучении дискретной математике в школе фундаментально значение метапредметного подхода. Действительно, в результате широкого распространения идей и методов дискретной математики в естественных, технических, экономических, гуманитарных и многих других науках появились свои метапредметные понятия-«столпы» языка ДМ: математическая модель, математический язык, алгоритм, отношение, изоморфизм, алгоритмическая разрешимость и ряд других. Стало быть, важны метапредметные результаты обучения языку ДМ, особенно результаты формирования на его основе математических схем мышления (логических, алгоритмических, комбинаторных, образно-геометрических). Поэтому метапредметные понятия-«столпы» языка ДМ и метапредметные результаты обучения имели фундаментальное значение в концепции и отборе содержания учебного пособия [5].

Список литературы

- 1. *Андреева Е. В., Босова Л. Л., Фалина И. Н.* Математические основы информатики : учебное пособие. М. : БИНОМ. Лаборатория знаний, 2005. 328 с.
 - 2. Глушков В. М. Кибернетика. Вопросы теории и практики. М.: Наука, 1986. 888 с.

- 3. Ершов А. П. Избранные труды. Новосибирск: Наука: Сиб. изд. фирма, 1994. 413 с.
- 4. Калинина А. Как подготовить страну к четвертой промышленной революции // Газета РБК. 16 января 2017. URL: https://www.rbc.ru/newspaper/2017/01/16/5878d2389a79470077130332.
- 5. Перминов Е. А. Дискретная математика: учебное пособие для 8–9 классов средней общеобразовательной школы. Екатеринбург: ИРРО, 2004. 206 с.
- 6. *Перминов Е.А.* Методическая система обучения дискретной математике студентов педагогических направлений в аспекте интеграции образования: монография. Екатеринбург: Изд-во Рос. гос. проф.-пед. ун-та, 2013. 286 с.
- 7. Перминов Е. А. О психологических аспектах реализации дискретной линии в модернизации математического образования // Инновации в образовании. 2014. № 10. С. 140–150.
- 8. Пономарев Я.А. Психология творения. М. : Московский психолого-социальный ин-т ; Воронеж : МЭДОК. 1999. 480 с.
- 10. *Тестов В. А.* Математическое образование в условиях сетевого пространства // Образование и наука. 2013. № 2 (101). С. 111–120.
- 11. Федеральный государственный образовательный стандарт среднего общего образования. URL: https://www.base.carant.ru.
- 12. *Фортунатова В. А.* Тривилизация образования как модель социальной динамики в современных информационных условиях / В. А. Фортунатова, Ю. А. Платонова // Философские проблемы информационных технологий и киберпространства. 2015. № 1. С. 23–40.
- 13. Чуприкова Н. И. Умственное развитие и обучение. М.: Столетие, 1995. 189 с. (Психол. основы развивающего обучения).

On the relevance of implementing the discrete line of digitization of professional education

E. A. Perminov

Doctor of Pedagogical Sciences, Professor of the Department of mathematics and natural science of the Russian State Professional and Pedagogical University. Russia, Yekaterinburg. E-mail: perminov_ea@mail.ru

Abstract. The article analyzes the fundamental role of modern discrete mathematics in the digitalization of professional education and substantiates its importance in raising the level of information culture of students.

Keyword: professional education, digitalization, implementation of a discrete line.

References

- 1. Andreeva E. V., Bosova L. L., Falina I. N. Matematicheskie osnovy informatiki: uchebnoe posobie [Mathematical foundations of computer science: textbook]. M. BINOM. Laboratory of knowledge. 2005. 328 p.
- 2. Glushkov V. M. Kibernetika. Voprosy teorii i praktiki [Cybernetics. Issues of theory and practice]. M. Nauka, 1986. 888 p.
 - 3. Ershov A. P. Izbrannye trudy [Selected works]. Novosibirsk. Nauka: Sib. publ. firm. 1994. 413 p.
- 4. *Kalinina A. Kak podgotovit' stranu k chetvertoj promyshlennoj revolyucii* [How to prepare the country for the fourth industrial revolution] // *Gazeta RBK* RBK Newspaper. January 16, 2017. Available at: https://www.rbc.ru/newspaper/2017/01/16/5878d2389a79470077130332.
- 5. Perminov E. A. Diskretnaya matematika: uchebnoe posobie dlya 8–9 klassov srednej obshcheobrazovateľ noj shkoly [Discrete mathematics: textbook for grades 8–9 of secondary school]. Yekaterinburg. IRRO. 2004. 206 p.
- 6. Perminov E. A. Metodicheskaya sistema obucheniya diskretnoj matematike studentov pedagogicheskih napravlenij v aspekte integracii obrazovaniya: monografiya [Methodical system of teaching discrete mathematics to students of pedagogical directions in the aspect of integration of education: monograph]. Yekaterinburg. Russian State Prof. and Ped. University. 2013. 286 p.
- 7. Perminov E. A. O psihologicheskih aspektah realizacii diskretnoj linii v modernizacii matematicheskogo obrazovaniya [On psychological aspects of implementation of the discrete line in the modernization of mathematical education] // Innovacii v obrazovanii Innovations in education. 2014. No. 10. Pp. 140–150.
- 8. *Ponomarev Ya. A. Psihologiya tvoreniya* [Psychology of creation]. M. Moscow Psychological and Social Institute; Voronezh. MEDOC. 1999. 480 p.
- 10. Testov V. A. Matematicheskoe obrazovanie v usloviyah setevogo prostranstva [Mathematical education in the conditions of network space] // Obrazovanie i nauka Education and science. 2013. No. 2 (101). Pp. 111–120.
- 11. Federal state educational standard of secondary general education. Available at: https://www.base.carant.ru. (in Russ.)
- 12. Fortunatova V. A. Trivilizaciya obrazovaniya kak model' social'noj dinamiki v sovremennyh informacionnyh usloviyah [Trivilization of education as a model of social dynamics in modern information conditions] / V. A. Fortunatova, Yu. A. Platonova // Filosofskie problemy informacionnyh tekhnologij i kiberprostranstva Philosophical problems of information technologies and cyberspace. 2015. No. 1. Pp. 23–40.
- 13. *Chuprikova N. I. Umstvennoe razvitie i obuchenie* [Mental development and training]. M. Stoletiye (Centenary). 1995. 189 p. (Psychol. fundamentals of developmental learning).