УДК 66.046.516

Л. А. Калинина, Ю. Н. Ушакова, Е. Г. Фоминых, Е. В. Кошелева, Т. В. Михайличенко, М. А. Пентин

ВЛИЯНИЕ ЭЛЕКТРОХИМИЧЕСКОГО ЛЕГИРОВАНИЯ СЕРОЙ НА ЭЛЕКТРОЛИТИЧЕСКИЕ СВОЙСТВА КИСЛОРОДПРОВОДЯЩИХ ТВЕРДЫХ ЭЛЕКТРОЛИТОВ НА ОСНОВЕ ОКСИДА ВИСМУТА

Твёрдые растворы на основе оксида висмута - BIBaOX $(Bi_3BaO_{5,5})$ и BICUVOX $(Bi_2V_{0,9}Cu_{0,1}O_{5,35})$ обладают ионной проводимостью в интервале парциальных давлений кислорода от 1 до 10^{-8} - 10^{-9} атм при 873 K за счёт структурного разупорядочения, но в области $P_{O_2} < 10^{-8}$ атм в восстановительной атмосфере им присуща в основном электронная проводимость. Расширение рабочей области P_{O_2} для этих многообещающих TЭ является актуальной проблемой химии твёрдого тела. Изменение электролитических свойств ТЭ может быть связано с введением гетеропримесей.

В работе проведено исследование характера изменения электрохимических и транспортных свойств кислородпроводящих ТЭ в области низких парциальных давлений кислорода при легировании их серой путём кулонометрического титрования с помощью сульфидпроводящих ТЭ.

Электрохимическое изменение состава кислородпроводящих электролитов проводили путём ввода серы при пропускании определённых порций электричества, порядка 10^{-4} Кл, что отвечало изменению массы образца на 10^{-9} г. Контроль за изменением электролитических свойств ТЭ при электрохимическом изменении их состава осуществляли методами кондуктометрии (измерение комплексной проводимости), ЭДС (среднеионные числа переноса) и Хебба-Вагнера (электронные числа переноса).

Выполненное исследование по изучению электролитических свойств кислородпроводящих ТЭ $Bi_3BaO_{5,5}$ и $Bi_2V_{0,9}Cu_{0,1}O_{5,35}$ позволяет сделать вывод о расширении интервала их электролитических свойств в область давлений кислорода 10^{-24} - 10^{-18} атм в результате электрохимического легирования серой в количестве $(1,7-3,3)\cdot10^{-7}$ ат. доли серы.

[©] Калинина Л. А., Ушакова Ю. Н., Фоминых Е. Г., Кошелева Е. В., Михайличенко Т. В., Пентин М. А., 2017

Химические науки

Полученный результат имеет существенное практическое значение, так как показывает направление воздействия на кислородпроводящие ТЭ нового поколения для расширения их функциональных свойств в область низких парциальных давлений кислорода в восстановительных средах.

Ключевые слова: сверхпроводник, кулонометрическое титрование, твердый электролит, транспортные свойства, парциальное давление.

Твёрдые растворы на основе оксида висмута - кислородпроводящие электролиты (ТЭ) нового поколения - отличаются высокой электропроводностью при сравнительно низких температурах.

По данным [1, 2] твёрдые электролиты на основе оксида висмута BIBaOX ($Bi_3BaO_{5,5}$) и ВІСUVOX ($Bi_2V_{0,9}Cu_{0,1}O_{5,35}$) в среднем обладают ионной проводимостью в интервале парциальных давлений кислорода от 1 до 10^{-8} - 10^{-9} атм при 873 К за счёт структурного разупорядочения. Обзор современной литературы не дает сведений о характере разупорядочения и механизме переноса в условиях низких парциальных давлениях кислорода ($P_{o_2} = 10^{-24}$ атм). Однако, учитывая данные о смешанном, скорее электронном, типе проводимости, при $P_{o_2} < 10^{-8}$ атм в исследуемых фазах на основе оксида висмута происходит восстановление с выделением некоторого количества висмута [2], изменение кристаллической структуры и уменьшение концентрации свободных позиций, связанных со структурным разупорядочением (V_0^{\times}). Тогда на первый план выходит дефектообразование за счет обмена кислородом с газовой фазой и образованием пар ($V_0^{\times} + 2\overline{e}$) по предлагаемому механизму (1, 2), в результате чего увеличивается доля электронной проводимости:

$$\left(Bi_{3}BaO_{5,5} \to 3Bi_{Bi}^{\times} + Ba_{Ba}^{\times} + (5,5-y)O_{O}^{\times} + \frac{y}{2}O_{2} \uparrow + 0,5V_{O}^{\times} + yV_{O}^{\cdots} + 2y\overline{e}\right), \quad (1)$$

$$\left(Bi_{2}V_{0,9}Cu_{0,1}O_{5,35} \to 2Bi_{Bi}^{\times} + 0,9V_{V}^{\times} + 0,1Cu_{V}^{\prime\prime\prime} + 0,15V_{O}^{\cdots} + (5,35-y)O_{O}^{\times} + \frac{y}{2}O_{2} \uparrow + 0,5V_{O}^{\times} + yV_{O}^{\cdots} + 2y\overline{e}\right), \quad (2)$$

где Bi_{Bi}^{\times} , Ba_{Ba}^{\times} , V_V^{\times} , Cu_{Cu}^{\times} , O_O^{\times} - электоронейтральные атомы иттрия, бария, подрешетках, В своих ванадия, меди, кислорода трехкратноионизированный атом меди в подрешетке ванадия, отрицательно заряженный; O_2 – свободный кислород; V_0^{\times} - электоронейтральные вакансии подрешетке структурного разупорядочения В кислорода; двукратноионизированные вакансии разупорядочения в подрешетке кислорода, положительно заряженные; \overline{e} - свободные электроны.

Кроме того, появление свободных электронов в кристалле со структурным разупорядочением может приводить к захвату электронов валентными анионными узлами решётки и образованию как нейтральных $[V_O^{"}\cdot 2\overline{e}]^{\times}$ (а), так и малоподвижных заряженных $[2V_O^{"}\cdot 2\overline{e}]^{"}$ (б), $[V_O^{"}\cdot \overline{e}]^{"}$ (в), $[V_O^{\times}\cdot \overline{e}]^{"}$ (г), $[V_O^{\times}\cdot 2\overline{e}]^{"}$ (д) ассоциатов. При этом происходит уменьшение ионной проводимости за счёт снижения подвижности основного носителя, а электронная проводимость такого кристалла окажется нестабильной во времени и будет уменьшаться до установления какого-то стационарного состояния. Таким образом, появление компенсирующих электронов приводит не только к увеличению электронной проводимости, но и к уменьшению её ионной составляющей.

Таким образом, практическое применение этих электролитов резко ограничено условиями работы в восстановительной среде при высоких температурах из-за узкого электролитического интервала парциальных давлений кислорода (P_{o_2}). Поэтому расширение рабочей области P_{o_2} для этих многообещающих ТЭ является актуальной проблемой в химии твёрдого тела. Изменение электролитических свойств ТЭ может быть связано с введением гетеропримесей.

Целью настоящей работы являлось исследование характера изменения электрохимических и транспортных свойств кислородпроводящих ТЭ в области низких парциальных давлений кислорода при легировании их серой путём кулонометрического титрования с помощью сульфидпроводящих ТЭ.

Химические науки

Кулонометрическое титрование ТЭ на основе оксида висмута проводили в ячейке с разделённым газовым пространством

$$(+) C / T \ni O^{2-} / T \ni S^{2-} / PbS, S / C (-)$$
 (3)

при 723 К. Выбранная температура обеспечивает высокие электролитические свойства сульфидпроводящей мембраны и не приводит к изменению состава исследуемого образца, ТЭ и электродов из-за потери серы в газовую фазу.

В качестве сульфидпроводящей мембраны использовали твёрдые растворы 2 мол % Pr_2S_3 в $CaPr_2S_4$ и 2 мол % Sm_2S_3 в $CaSm_2S_4$, обладающие лучшими электролитическими свойствами [3]. В роли электрода - донора для введения серы в исследуемые оксиды использовали сульфид свинца с добавкой 1-2 мас % серы.

Электрохимическое изменение состава кислородпроводящих электролитов проводили путём ввода серы при пропускании определённых порций электричества, порядка 10^{-4} Кл, что отвечало изменению массы образца на 10^{-9} г. Количество введённой серы определялось по уравнениям

$$\Delta m = Q / (2 \cdot F), \qquad (4)$$

$$\Delta \delta = \Delta \mathbf{m} \cdot \mathbf{M}_{S} / \mathbf{m}_{T} \,, \tag{5}$$

где Δm — количество перенесенного вещества, г., Q — количество пропущенного электричества, Кл, F — постоянная Фарадея, Кл/моль, $\Delta \delta$ — величина нестехиометрии, ат. доли серы, M_S - молярная масса серы, г/моль, m_T — масса образца , г.

Контроль за фазовым состоянием легированных образцов BIBaOX и BICUVOX осуществляли методом РФА на дифрактометре ДРОН-3 на Си K_{α} - излучении. Анализ дифрактограмм показал отсутствие продуктов взаимодействия сульфидпроводящих ТЭ с исследуемыми BIBaOX и BICUVOX.

Контроль за изменением электролитических свойств ТЭ при электрохимическом изменении их состава осуществляли методами кондуктометрии (измерение комплексной проводимости), ЭДС (среднеионные числа переноса) и Хебба-Вагнера (электронные числа переноса). Исследование

электропроводности проводили двухэлектродным методом с помощью моста переменного тока на фиксированной частоте 100 кГц в температурном интервале от 293 К до 773 К.

Среднеионные числа переноса для образцов различного состава определяли путём сопоставления ЭДС, измеренных в гальванических элементах

$$C/Cu$$
, $Cu_2O/Bi_3BaO_{5.5}S_{\delta}/FeO$, Fe/C, (6)

$$C / Cu, Cu_2O / Bi_2V_{0.9}Cu_{0.1}O_{5.35}S_{\delta} / Cu_2O, CuO / C,$$
 (7)

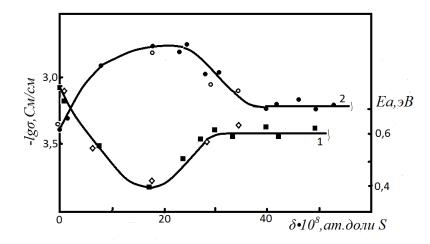
с электродами, обратимость которых относительно кислорода установлена [4].

Среднеэлектронные числа переноса для BICUVOX определяли поляризационным методом Хебба-Вагнера в ячейке:

(+)
$$C / Bi_2V_{0.9}Cu_{0.1}O_{5.35}S_{\delta} / Cu_2O, Cu / C$$
 (-), (8)

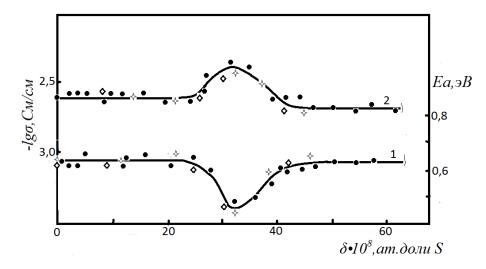
где наблюдаемый в стационарном состоянии ток обусловливается электронами [5]. Для определения электронной проводимости на ячейку (8) накладывали напряжение в интервале 0-1 В, с шагом 0,05 В. Электронную проводимость и среднеэлектронные числа переноса рассчитывали по уравнениям

$$\sigma_{e} = z F \cdot I \cdot I / (R \cdot T \cdot S), \qquad (9)$$


$$\bar{t}_e = \sigma_e / (\sigma_i + \sigma_e), \qquad (10)$$

где I - электронный ток насыщения, A, z=2, F - постоянная Фарадея, Кл/моль, R - универсальная газовая постоянная, Дж/моль град, l, S - геометрические параметры исследуемого образца, см, см², σ_e , σ_i – парциальные проводимости электронов и ионов соответственно, $Om^{-1} \cdot cm^{-1}$, \bar{t}_e – число переноса электронов.

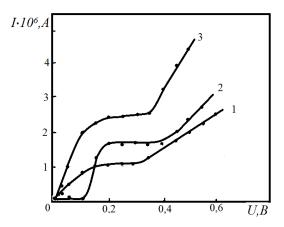
До и после каждой порции серы, введённой в исследуемые оксиды, изучали температурную зависимость их электропроводности (σ) и рассчитывали энергию активации подвижности основных носителей (E_a).


Изотермы зависимости E_a (кривая 1), проводимости σ (кривая 2) от количества легирующей добавки серы для $Bi_3BaO_{5.5}$ и $Bi_2V_{0.9}Cu_{0.1}O_{5.35}$ приведены на рисунках 1 и 2, соответственно. При введении первых микродоз

серы в $Bi_3BaO_{5.5}$ наблюдается уменьшение E_a (кривая 1) и увеличение σ (кривая 2). Причём первая кривая характеризуется минимумом, а вторая - максимумом при введении $\sim 1.7 \cdot 10^{-7}$ ат. долей серы.

Puc. 1. Изотермы зависимости $E_a(1)$ и $\sigma(2)$ $Bi_3BaO_{5.5}S_\delta$ от количества легирующей серы (δ)

Поведение электрофизических величин (σ и E_a) для $Bi_2V_{0.9}Cu_{0.1}O_{5.35}$ аналогично: кривая 1, отвечающая изменению E_a , имеет минимум, а кривая 2, отвечающая изменению σ , имеет максимум при введении серы в количестве $3.29 \cdot 10^{-7}$ ат. доли серы.


Puc.~2. Изотермы зависимости $E_a(1)$ и $\lg \sigma(2)$ $Bi_2V_{0.9}Cu_{0.1}O_{0.35}S_\delta$ от количества легирующей серы (δ)

Данные о среднеионных числах переноса (\bar{t}_i) , определённых традиционным методом ЭДС в ячейках (6,7), приведены в таблице 1. Давления кислорода, заданные использованными в качестве электродов оксидами, при температуре эксперимента составляют 10^{-24} - 10^{-18} атм, что гораздо ниже электролитического интервала BIBaOX и BICUVOX, которые в этих условиях являются смешанными проводниками. Поэтому среднеионные числа переноса исходных оксидов гораздо меньше единицы. С введением серы в количестве, отвечающем оптимальным значениям электрофизических свойств оксидов (то есть min E_a и тах σ), среднеионные числа переноса увеличивались примерно на 0.2. Дальнейшее введение серы привело к снижению \bar{t}_i .

Таблица 1 Среднеионные числа переноса

	δ, ат. доли серы	$\overline{t}_i \pm 0.1$		
ТЭЛ		T, K		
		673	693	723
Bi ₃ BaO _{5.5} S _δ	0	0.4	0.5	0.5
	*1.6 ·10 ⁻⁷	0.6	0.7	0.7
	$4.2 \cdot 10^{-7}$	0.3	0.3	0.4
$Bi_{2}V_{0.9}Cu_{0.1}O_{5.35}S_{\delta}$	0	0.5	0.6	-
	$3.17 \cdot 10^{-7}$	0.4	0.5	0.6
	*3.3 ·10 ⁻⁷	0.7	0.8	0.8

где * - составы, отвечающие оптимальной электропроводности.

Puc. 3. Вольт-амперные зависимости ячейки (6) с $Bi_2V_{0.9}Cu_{0.1}O_{0.35}S_{\delta}$, 3 - $\delta = 0$;

Химические науки

2 -
$$\delta = 3,3 \cdot 10^{-7}$$
 3 - $\delta = 4,1 \cdot 10^{-7}$; ат. доли серы, $T = 673$ К

Среднеэлектронные числа переноса (\bar{t}_e) для чистого и легированного ВІСUVOX рассчитывали с учётом величины электронного тока насыщения вольт-амперных зависимостей ячейки (8), приведённых на рис. 3. Кривая 3, отвечающая чистому соединению, имеет максимальную величину тока насыщения. При введении в систему оптимального количества серы (3,3·10⁻⁷ ат. доли), наблюдается уменьшение величины тока насыщения (кривая 2), а дальнейшее введение серы в оксид приближает \bar{t}_e к характеристикам чистого ВІСUVOX (кривая 1).

Рассчитанные по результатам эксперимента электронные числа переноса исходного ${\rm Bi_2V_{0.9}Cu_{0.1}O_{5.35}}$ и образца с $4,1\cdot10^{-7}$ ат. доли серы имеют порядок величины 10^{-2} , образец с оптимальным содержанием серы - 10^{-3} . Причина несовпадения \bar{t}_i и \bar{t}_e может быть связана как с погрешностью поляризационного метода применительно к смешанному проводнику [5], так и с возникновением каких-то коллективных носителей, природа которых пока неизвестна.

Таким образом, выполненное исследование ПО изучению электролитических свойств кислородпроводящих $Bi_3BaO_{5.5}$ ТЭ $Bi_2V_{0.9}Cu_{0.1}O_{5.35}$ позволяет сделать вывод о расширении интервала их электролитических свойств в область давлений кислорода 10^{-24} - 10^{-18} атм в результате электрохимического легирования серой в количестве $(1,7-3,3)\cdot 10^{-7}$ ат. доли серы. Полученный результат имеет существенное практическое значение, так как показывает направление воздействия на кислородпроводящие ТЭ нового поколения для расширения их функциональных свойств в область низких парциальных давлений кислорода в восстановительных средах

Список литературы

- 1. *Jan J.*, *Greenblatt M*. Ionic condactivity of Bi_{3-x}M_xBaO and Bi₃BaO_{5.5} (M = Pb, Cd) solid solutions // J. Solid State Ioncs. 1995. Vol. 82. P. 209–214.
- 2. *Abraham F.*, *Boivin J. C.*, *Mairess G.*, *Nowogrocki G.* The BIMEVOX series: a nev Family of high performances oxide ion conductorc // Solid State Ionics. 1990. 40/41. P. 934–937.
- 3. *Калинина Л. А.*, *Широкова Г. И.*, *Мурин В. И.*, *Ушакова Ю. Н.*, *Фоминых Е. Г.*, *Лялина М. Ю.* Сульфидпроводящие твердые электролиты // Журнал прикладной химии. 2000. Т. 73. Вып. 8. С. 1324–1331.
 - 4. Третьяков Ю. Д. Химия нестехиометрических окислов. М.: МГУ, 1974. 364 с.
- 5. *Кукоз Ф. И., Гусейнов Р. М.* Электродные процессы в твердых электролитах. Ростов: Изд-во Ростов. ун-та,1986. 128 с.

КАЛИНИНА Людмила Алексеевна – кандидат химических наук, доцент, профессор кафедры неорганической и физической химии, Вятский государственный университет. 610000, г. Киров, ул. Московская, 36.

E-mail: kalinina@vyatsu.ru

УШАКОВА Юлия Николаевна — кандидат химических наук, доцент, заведующий неорганической и физической химии, Вятский государственный университет. 610000, г. Киров, ул. Московская, 36.

E-mail: ushakova@vyatsu.ru

ФОМИНЫХ Елена Геннадьевна — кандидат технических наук, доцент, доцент кафедры неорганической и физической химии, Вятский государственный университет. 610000, г. Киров, ул. Московская, 36.

E-mail: fominyh@vyatsu.ru

КОШЕЛЕВА Екатерина Валентиновна – кандидат химических наук, доцент кафедры неорганической и физической химии, Вятский государственный университет. 610000, г. Киров, ул. Московская, 36.

E-mail: koshurnikova@vyatsu.ru

Химические науки

МИХАЙЛИЧЕНКО Тамара Викторовна — кандидат химических наук, доцент кафедры неорганической и физической химии, Вятский государственный университет. 610000, г. Киров, ул. Московская, 36.

E-mail: tv_mihailichenko@vyatsu.ru

ПЕНТИН Максим Александрович – аспирант кафедры неорганической и физической химии, Вятский государственный университет. 610000, г. Киров, ул. Московская, 36.

E-mail: maksimpentin@gmail.com