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Abstract. Assessment of the level of vibration effects on the elements of technological and transportation 

vehicles is one of the most important approaches in ensuring their reliability and operational safety. The aim of the 

research is to develop a method for constructing mathematical models of technical objects, whose vibrational 

interactions are estimated by the dynamic responses of the connections of the elements between themselves and the 

supporting surfaces. The work uses approaches based on the development of methods of structural mathematical 

modeling and introduces the concepts of dynamic responses of characteristic points of mechanical oscillatory systems, 

transfer functions of constraint responses and their frequency characteristics. The research demonstrates features of 

the dynamic properties of systems and the possibility of the occurrence of new dynamic effects. As additional 

constraints, a motion transformation device is introduced. It is shown that the ratio of the dynamic responses of 

constraints on the object of protection and on the support surface can be chosen as a parameter of the dynamic state of 

the system. Analytical dependencies are obtained to determine the coefficient of response dynamism. 

Numerical modeling is performed within the scope of the model problem; Dynamic effects are revealed that 

reflects the properties of the system in the possibilities of creating zones of suppression of external influences when 

varying adjusting parameters. The possibilities of implementing such approaches are shown through a change in the 

ratio of spring stiffness in the "cascade". 
 

Keywords: dynamic responses of constraints, transfer functions, motion transformation devices, dynamic 

stiffness. 
 

Introduction. The reliability and safety of the operation of many technical facilities operating under 

dynamic loading conditions depends on the level and forms of the occurring vibrations. The management of 

the dynamic states of technical objects is ensured by special tools and devices introduced into the structure 

of systems to make it possible to keep the emerging dynamic processes within certain limits. The search of 

a method and means of vibration protection as one of the urgent problems of modern mechanical science 

was reflected in the works of domestic and foreign specialists [1, 2]. Reducing the vibrational background 

of technological and transportation vehicles requires attention to the assessment of the dynamic 

capabilities of technical objects at all stages of their life cycle, in particular, in predevelopment studies and 

preliminary calculations [3, 4]. 

The use of computational schemes of technical objects, followed by the unification of methods, 

approaches and methods for estimating dynamic states, has become very popular in solving dynamic 

problems. In this direction, various methods of constructing mathematical models and technologies for 

their transformation have been developed and are being applied that allow taking into account the features 

of constructive and technical forms of objects, the conditions for the formation of dynamic states under the 

influence of various external disturbances, etc. 

The methods of structural mathematical modeling [5 ÷ 7] possess certain advantages in the 

estimation of dynamic effects when mechanical oscillatory systems are introduced as computational 
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schemes of technical objects. Within the framework of this approach, a structural mathematical model in 

the form of a structural diagram of a dynamically equivalent automatic control system is compared to a 

mechanical oscillatory system with several degrees of freedom [7-9]. The further use of the analytical tools 

of the automatic control theory provides the possibilities of applying advanced technologies for frequency 

analysis of the dynamic properties of systems. 

The proposed article develops a methodological basis for estimating the dynamic properties of 

mechanical oscillatory systems as physical models of technical objects under the influence of periodic 

external disturbances; a new approach is proposed for estimating dynamic states. It is based on the 

introduction of such parameters as dynamic responses of the constraints of interacting elements, which 

requires certain developments in the techniques of structural transformations of mathematical models and 

appropriate methods for estimating dynamic states. 

I. Some general provisions 

Many technical objects, in particular, traction electric motors of vehicles (locomotives) are 

considered as systems with two degrees of freedom, consisting of a solid body making plane oscillatory 

movements. External influences in such problems are determined by periodic motions of the support 

surface and are supposed to be known. A schematic diagram of a technical object of this kind (in particular, 

the traction motor of a locomotive) with a computational scheme in the form of a mechanical oscillatory 

system with two degrees of freedom is shown in Fig. 1. 

The motion of the system is considered in the system of coordinates y1, y2, connected with the fixed 

basis. The system uses elastic elements with stiffnesses k1, k2, k3 and additional constraints in the form of 

the motion transformation device (MTD). A technical object in the form of a solid body that performs 

vertical oscillations on elastic supports can be represented, as shown in Fig. 1, by a mechanical oscillatory 

system. 

The system consists of two elastic branches: one is determined by the serial connection of the elastic 

element k1 and the block of parallel running springs k2, and the motion transformation device with reduced 

mass L. 

The characteristic points of connection of the three elements of the branch are pp. (В), (В1), (В2). The 

second elastic branch is represented by a spring with a stiffness coefficient k3 with characteristic 

attachment points p. (A) and p. (А1). The support surface performs harmonic vibrations z(t). The object has 

mass m; the motion transformation device (MTD) in this case is implemented by a screw non-locking 

mechanism with a flywheel nut of mass L; the value of this reduced mass depends on the MTD parameters 

α
=

22

ср
tgr

J
L

.        (1) 

where J is the moment of inertia of the flywheel nut, rср is the average radius of the thread, and α is the 

spiral angle of inclination [9]. 

 
Fig. 1. The computational scheme of a technical object in the form of a mechanical oscillatory system (pp. (А), (А1), 

.(В) ÷ (В2) are characteristic points in which dynamic responses of constraints occur) 
The motion of the system is considered in the coordinates y1 and y2: y2 determines the position of the 

object m, and the coordinate y2 determines the position of p. (В1), in which there is a connection of three 
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typical elements of the system (springs with stiffnesses k1 and k2 with an MTD having a reduced mass L). It 

is assumed that the system has linear properties and oscillates with respect to the position of static 

equilibrium. The coordinate system is connected with a fixed basis, the resistance forces are supposed to be 

vanishingly small. 

1. Mathematical model of the technical object in Fig. 1 can be represented as a system of ordinary 

differential equations of the second order with constant coefficients. Using the technique given in [7], we 

find expressions for the kinetic and potential energies of the system in the coordinates y1, y2: 
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We perform auxiliary calculations and write the equations in the coordinates y1, y2 in the time 

domain: 
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After Laplace transformations under zero initial conditions, the system of equations (4), (5) can be 

represented in the operator form 
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where p = jω is the complex variable ( 1−=j ); the icon − above the variable means its Laplace 

transform [7]. 

A structural mathematical model in the form of a structural diagram of a dynamically equivalent 

automatic control system is shown in Fig. 2. 

 

 
Fig. 2. Structural mathematical model (structural diagram) of the technical object in Fig. 1 

 

From Fig. 2 it follows that the structural model reflects the specific properties of the system; the 

structure of the system is formed from two partial blocks having elastic-inertial interpartial constraints. At 

the frequency of the external disturbance 

L

k
22 =ω

,        (8) 

the interaction between the partial frequencies can be violated. To estimate the features of the dynamic 

properties of systems with an external harmonic perturbation (in this case this kinematic perturbation z(t)) 

, partial frequencies have a definite value: 

L
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which predetermine, in a sense, the possibility of implementing regimes of dynamic damping of oscillations 

in the system. 

2. The transfer functions of the original system in Fig. 1 can be determined from the structural 

mathematical model or structural diagram in Fig. 2: 
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is the characteristic frequency equation of the system. 

To evaluate the dynamic responses of constraints, the methodological basis presented in [7] is used, 

according to which the dynamic response at the characteristic points of the initial system (that is, at the 

connection points or the contact interaction of its elements) can be found as the product of dynamic 

stiffness by the magnitude of the dynamic displacement on the coordinate under consideration. 

In general, the dynamic stiffness depends on the frequency of the system's oscillations (in this case, 

on the frequency of the external harmonic kinematic effect). While such approaches are applied to specific 

schemes, one can usually distinguish the dynamic stiffness of system fragments and dynamic stiffness of 

individual elements or typical elementary links. 

The data on the composition of a set of typical elementary links are presented in [1, 5, 7] with 

consideration of the elastic, dissipative, inertial properties of elements and motion transformation devices 

(MTD). In the operator form (Fig. 2) the transfer functions of the elementary links, introduced into the 

structural mathematical model, have the corresponding form: Welas(р) = k for the usual linear system (k is 

the spring stiffness); Wdiss(р) = bp for the dissipative link (viscous friction damper); Winer(р) = mp2 (or Lp2) 

for an inertial link or a motion transformation device. 

Each of the typical elementary links, in essence, within the scope of structural mathematical 

modeling, is considered as a link, the input signal in which is the dynamic displacement, and the output 

signal is the effort (power factor). 

In the expressions for the transfer functions of the system (11), (12) the dynamic stiffness will be 

determined by converting these expressions, which predetermines the representation of the characteristic 

equation (13), that is, the denominator of the transfer functions (11), (12) in general. If the dynamic 

stiffness of the system as a whole is zero, this means that under the influence of the harmonic external 

action a resonance regime will develop, when the motion of the corresponding inertial element, to which an 

external disturbance is applied, will not face any counteraction movements; the dynamic stiffness of the 

system as a whole becomes zero at the same time. 

3. If the system has two degrees of freedom, then the dynamic stiffness of the system, as a whole, will take 

zero values twice; such frequencies are frequencies of natural oscillations. The structural diagram in Fig. 2 when 

considering dynamic responses at characteristic points, for example, at p. (В2), can be transformed to the form 

shown in Fig. 3, a, b. In this case, the element m is an object whose dynamic state is evaluated; the transfer 

function of an object is interpreted by an integrating link of the second order 







2

1

mp
. 

 
Fig. 3. The structural diagram of the initial system in Fig. 2 with the elimination of the coordinate y1 

In the structural diagram in Fig. 3, the negative feedback loop with respect to the object m 

represents, in the physical sense, the dynamic stiffness of the structural formation consisting of two 
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branches: the first is a spring with stiffness k3, the second has the dynamic stiffness of the system fragment 

of the elements k1, k2 and L (cascade), which has been mentioned above. 

On the basis of such representations, the dynamic responses of the constraints at the characteristic 

points of the system (А), (А1), (В), (В1), (В2) can be written as: 
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The dynamic stiffness пр
k  in the expressions (13) can also be determined as the transfer function of 

the negative feedback circuit. On the structural diagram (Figure 3) this can be represented as an expression 

for the reduced dynamic stiffness 
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which coincides with the previously obtained results in (14). Thus, the dynamic responses characterizing 

the properties of the suspension can be written as 
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4. To characterize the properties of the suspension, a transfer function of the dynamic links between 

the responses of the support surface supp
R and the responses of the constraints m

R  created by the 

external kinematic perturbation z  
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It follows from analysis (18) that the graph of N(ω) will have one frequency of "zeroing" the 

numerator 
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The denominator of expression (18) can be "nullified" at two frequencies: 
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It should be noted that expression (20) coincides with expression (9) for determining the partial 

frequency. 

The introduction of the relation for the dynamic responses N(ω) at the characteristic points of the 

suspension (support surface and protection object) has a definite meaning: the kinematic parameters of the 

motion and the dynamic forces occurring in the joints of the elements should be related to each other in a 

certain way. When the dynamic loading parameters change, the system should react (or be adjusted) in a 
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certain way. In this case it is proposed to introduce an adjusting parameter in the form of a ratio of the 

stiffness coefficients of the two suspension branches (k1 and k3). The physical possibilities of implementing 

such approaches in practice exist and are used in active vibration protection systems. 

II. Estimation of the dynamic properties of the system 

Let us denote  

k2 = β·k1, k3 = γ·k1,       (22) 

then the expressions (11), (12) are respectively transformed 
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1. The ratio of dynamic constraint responses represented by expression (18) can be written in the form 
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From analysis of the transfer function (23) it follows that two resonance regimes are possible with 

respect to the coordinate 1
y

. The frequencies of resonances or natural vibrations are determined by 

solving the characteristic frequency equation (25). It should be noted that the values of the frequencies of 

natural oscillations depend on the adjusting parameters β and γ, as well as on the reduced mass L of the 

motion transformation device (MTD). 

With respect to the coordinate 1
y

 there can be a mode of dynamic damping of oscillations at a 

frequency 
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With respect to the coordinate 2
y

the frequency of dynamic damping of the oscillations is: 
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For L = 0, a dynamic damping mode of the oscillations is possible only with respect to the coordinate 1
y . 

The ratio of the dynamic responses of the constraints N(ω) can be called the coefficient of response 

dynamism, since it characterizes the peculiarities of the transfer of force effects from the supporting 

surface towards the object. 

In the general case, N(ω) can have a zero value at the frequency 
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which follows from the "zeroing" of the numerator (26). 

In turn, N(ω) has infinitely large values at two frequencies 
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As the frequency of the external influence (ω2 → ∞) increases, N(ω) tends to the limiting value 
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2. Frequency characteristics (FC) of the constraint responses are shown in Fig. 4, a, b. For example, 

the following parameters are chosen in the model problem: m = 1000 kg, L = 100 kg, k1 = 1000 N/m, β = 1. 

 a) 
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(b) 

 
Fig. 4. Frequency characteristics of the responses of constraints at the characteristic points of the mechanical 

oscillatory system (pp. (А), (А1), (В), (В2)): 

a) γ = 0.1, 0.5, 1; b) γ = 1, 2, 3 
 

In Fig. 4, a, b pp. (1), (2), (3), (4) reflect the shift to the right (in the direction of increase) of the 

frequencies of resonance increase N(ω). The points on the abscissa axis (pp. (1), (2), (3), (4)) reflect the 

positions of the corresponding frequencies of increase in amplitudes of N(ω) to large values. When 

comparing pp. (1) ÷ (4) in Fig. 4, a and pp. (1) ÷ (4) in Fig. 4, b, there is a shift of frequencies to the right, 

observed before the coincidence of pp. (4) in Fig. 4, b, with increasing the adjusting parameter. 

In the limiting cases (Figure 4, b) the points can coincide, which indicates a strong influence of 

adjusting parameters on the distribution of dynamic responses in the interactions of the elements of the 

system. When comparing the FC for different γ, we note that the frequency of the dynamic damping of the 

oscillations (pp. (5), (6), (7)) is shifted to the right to p. (4), which is due to the separate dependence of the 

dynamic states on the adjusting parameters β and γ. 
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2. Fig. 5 shows the FCs of dynamic responses in isometric form, where the spatial distribution of the 

graphs of the N(ω) dependences has an additional coordinate axis along which the adjusting parameter γ is 

plotted. 

 

a) b) 

Fig. 5. The graph of the N(ω) dependences in isometric form: a) surface graph; b) data points 
 

Fig. 5 shows an isometric representation of the frequency-characteristic relations of dynamic 

responses depending on the frequency of the external influence, taking into account the deep variation of 

the parameters. Fig. 5, a denotes the zone of abrupt change in the values of N(ω) that occur at frequencies, 

increasing (or amplifying) the transmission of power disturbances. 

The spatial diagram (Figure 5, a) presents two regions of the values of the intensive increase in 

dynamic response; the zone marked by the arrow A (Figure 5, a) is shown in detail in Fig. 6, a. 

Fig. 6, b shows the overall picture of changes in the values and forms of the dynamism coefficients, 

which makes it possible to assess the general conditions for the influence of adjusting parameters on the 

dynamic properties of the suspension system. 

a) b) 

Fig. 6. Detailed view of the graphs in Fig. 5: a) the zone marked by the arrow A (Figure 5, a); b) the zone marked by 

the arrow B (Figure 5, b) 
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Conclusion 

This paper develops new methodological approaches to evaluate the dynamic properties of 

mechanical oscillatory systems considered as computational schemes of technical objects. It is shown that 

the traditional ideas about the formation of the dynamic properties of mechanical oscillatory systems, 

including suspensions and suspension systems of vehicles, based on a comparative analysis of kinematic 

parameters, can be additionally detailed by taking into account the dynamic responses of constraints. 

The work introduces a number of new concepts that reflect the features of dynamic interactions of 

system elements, which is reflected in the frequency characteristics of the dynamic responses of 

constraints. Such approaches create the prerequisites for the development of a comprehensive analysis of 

the overall picture of the interaction of the elements of the system and for the creation of conditions for 

improving the reliability of the machine components designed with allowance for a more complex system 

of vibrational loading during intensive machine operation. 

In general, the work is related to the development of a new method for estimating the dynamic 

properties of objects, vibration loadings, as well as the technologies for its implementation, using the 

example of the analysis of the transport suspension model as a mechanical system with two degrees of 

freedom. 
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