Физико-математические науки

УДК 512.55

В. В. Чермных, О. В. Чермных

ПРЕДСТАВЛЕНИЕ РЕШЕТОЧНО УПОРЯДОЧЕННОГО ПОЛУКОЛЬЦА СЕЧЕНИЯМИ

Работа посвящена функциональным представлениям алгебр. Пучковые представления имеют давнюю историю, они широко применялись при исследовании колец, полуколец, дистрибутивных решеток, решеточно упорядоченных колец и абелевых групп, других алгебр. Объектом исследования в нашей статье выбрано решеточно упорядоченное полукольцо (drl-полукольцо). drl-Полукольца образуют достаточно широкий класс, являющийся многообразием, включающим в себя решеточно упорядоченные кольца, булевы алгебры, брауэровы решетки, некоторые числовые полукольца. Ранее для drl-полукольца авторами были получены пучковые представления сечениями пучков над неприводимым спектром drl-полукольца или его подпространством. В настоящей статье строится пучок на первичном спектре, обобщающий известную конструкцию пучка ростков алгебр. Основным результатом является доказательство изоморфности представления l-полупервичного drl-полукольца с единицей сечениями этого пучка.

Ключевые слова: решеточно упорядоченное полукольцо, функциональное представление.

Пучковые представления алгебр ведут свое начало с 60-х годов прошлого столетия. К настоящему моменту хорошо развиты теории представлений для колец, полуколец и, в некоторой степени, дистрибутивных решеток. В 1971 г. вышла большая статья К. Кеймеля [1], в которой подробно исследуются функциональные представления решеточно упорядоченных колец. Пучки, используемые Кеймелем, являются абстрактными аналогами пучков ростков непрерывных функций, их базисные пространства связаны с неприводимыми *l*-идеалами.

_

[©] Чермных В. В., Чермных О. В., 2017

Физико-математические науки

В представляемой статье за основу берется конструкция Кеймеля, но пространство строится на множестве первичных l-идеалов. Отметим, что специфика решеточно упорядоченных алгебр такова, что «неприводимость лучше первичности». Так, в нашей работе это ведет к сужению класса рассматриваемой алгебры до l-полупервичных drl-полуколец. Теория решеточно упорядоченных полуколец находится пока в стадии становления.

Одним из наиболее изученных классов является многообразие *drl*-полуколец, которые были определены Ранга Рао в 1981 г. [2].

В работе мы используем стандартную терминологию теории полуколец [3]; свойства drl-полуколец (и drl-полугрупп) можно найти в [2],[4],[5], а с определением пучка и свойствами пучковых представлений можно познакомиться в [6].

Определение. Алгебра $(S,+,\cdot,\vee,\wedge,0,-)$ называется drl-полукольцом, если выполняются условия:

- 1) $(S,+,\cdot,0)$ полукольцо;
- 2) (S,\lor,\land) решетка (с порядком \leq);
- 3) сложение + дистрибутивно относительно \vee и \wedge ;
- 4) для любых $a, b \in S$ a b наименьший элемент $z \in S$ такой, что $b + z \ge a$;
- 5) $(a b) \lor 0 + b \le a \lor b$ для любых $a, b \in S$;
- 6) a(b-c) = ab ac и (a-b)c = ac bc для любых $a,b,c \in S$;
- 7) $ab \ge 0$ для любых $a, b \ge 0$ из S.

Определение drl-полукольца базируется на определении drl-полугруппы [3]. Основными источниками появления этих алгебр являются полугруппы и дистрибутивные решетки с дополнительными условиями, типа наличия частных элементов.

Определение. Непустое подмножество A drl-полукольца S называется udeanom, если выполняются условия:

1) если $a, b \in A$, то $a+b \in A$;

Физико-математические науки

- 2) если $a \in A, s \in S$, то $as, sa \in A$
- 3) если $b*0 \le a*0, a \in A$, то $b \in A$.

Стандартно устанавливается замкнутость идеала относительно всех операций drl-полукольца. Конгруэнции на drl-полукольце характеризуются своими классами нуля, или равносильно, ядрами естественных гомоморфизмов [2, theorem 1.1]. Именно, каждой конгруэнции соответствует l-идеал, являющийся классом нуля, а каждый l-идеал A drl-полукольца S однозначно определяет конгруэнцию $a \equiv b(A) \Leftrightarrow a * b \in A$. Две конгруэнции на S совпадают тогда и только тогда, когда равны их классы нуля.

Понятно, что l-идеал drl-полукольца S является идеалом S, рассматриваемого как абстрактное полукольцо, и выпуклой подрешеткой.

Определение. Собственный l-идеал P drl-полукольца S называется nepsuчным, если для любых l-идеалов I,J из S включение $IJ \subseteq P$ влечет $I \subseteq P$ или $J \subseteq P$.

Обозначим через SpecS пространство всех первичных l-идеалов из S со топологией Стоуна-Зарисского. Открытые множества будем обозначать $d(A) = \{P \in SpecS : A \not\subset P\}, A - l$ -идеал.

Для открытого $U \subseteq SpecS$ положим

$$0_U = \bigcap \{P \in SpecS : P \in U\};$$

ДЛЯ $P \in SpecS$

 $0_P = \{0_U : U$ - открытая окрестность точки $P\}$.

Лемма 1. Для любого открытого $U \subset SpecS$

$$0_U = \cap \{0_P : P \in U\}.$$

Доказательство. Понятно, что $0_P \subseteq P$, поэтому верно включение \supseteq . С другой стороны, по определению 0_P содержит 0_U для любого $P \in U$, поэтому верно включение \subseteq .

Физико-математические науки

Пусть $a,b\in 0_p$, тогда $a\in 0_U$, $b\in 0_V$ для некоторых открытых окрестностей U,V точки P. Тогда $a,b\in 0_{U\cap V}$, откуда $a+b\in 0_{U\cap V}$. Для любого $s\in S$ выполняется $as,sa\in 0_U$. Если $x*0\le a*0$, то $x\in 0_U$. Получаем, $a+b,as,sa,x\in 0_P$, и 0_P - l-идеал. Далее, если $x\in 0_P$, то найдется такая окрестность U точки P, что $x\in 0_U$, и для любой точки $Q\in U$ выполняется $x\in 0_Q$. Получили, что множество $\{Q\in SpecS: x\in 0_Q\}$ \$ открыто, поскольку с любой своей точкой содержит и некоторую окрестность этой точки. Следовательно, справедлива.

Лемма 2. Семейство l-идеалов вида 0_o , где $P \in SpecS$, открыто.

Пусть ($\Lambda(S)$, SpecS) - пучок drl-полуколец, индуцированный семейством l-идеалов $\{0_P: P \in SpecS\}$ \$. Его слои - это drl-полукольца $S/0_P$. Представление $s \to \hat{s}$ drl-полукольца S будет точным (инъективным), тогда и только тогда, когда его ядро $\bigcap \{0_P P \in SpecS\}$ будет нулевым. По лемме 1 и определению множества 0_U это равносильно тому, что nepsuvhu padukan - пересечение всех первичных l-идеалов из S - равен нулю. Назовем drl-полукольцо с нулевым первичным радикалом l-nonynepsuvhu.

Теорема 3. Произвольное l-полупервичное drl-полукольцо S c l изоморфно drl-полукольцу всех глобальных сечений пучка ($\Lambda(S)$, SpecS).

Доказательство. Пусть σ - произвольное глобальное сечение пучка $(\Lambda(S),SpecS)$. Известно, что произвольный элемент drl-полукольца можно представить в виде разности двух положительных элементов, поэтому достаточно рассмотреть случай $\sigma \ge 0$. Для любого $P \in SpecS$ найдется такой элемент $a_P \in S$, что $\sigma = \hat{a}_P$ в точке P, а значит и на некоторой открытой окрестности U_P точки P. Пространство SpecS компактно, поэтому из открытого покрытия $\{U_P: P \in SpecS\}$ выберем конечное подпокрытие $\{U_1, ..., U_k\}$ и соответствующие элементы $a_1, ..., a_k$. Для любого i=1, ..., k получаем $\sigma = \hat{a}_i$ на $U_i = d(B_i)$ для некоторого l-идеала B_i . В силу положительности σ можно считать $a_i \ge 0$ (к примеру, положить a_i равным $a_i \lor 0$). Поскольку

Физико-математические науки

 $SpecS = d(B_1) \cup ... \cup d(B_k)$, то $B_1 + ... + B_k = S$. Для l-колец справедлив результат: если $b \in A_1 + ... + A_n$ для l-идеалов A_i , и $b \ge 0$, то $b = a_1 \vee ... \vee a_n$ для некоторых положительных $a_i \in A_i$. Несложно заметить, что доказательство этого утверждения для l-кольца легко переносится на drl-полукольца [1, lemma 1.11]. Поэтому имеем: $a_1 \vee ... \vee a_k = b_1 \vee ... \vee b_k$ для некоторых $0 \le b_i \in B_i$. Положим

$$a = (a_1 \wedge b_1) \vee ... \vee (a_k \wedge b_k).$$

Покажем, что σ совпадает с сечением \hat{a} . Для этого покажем, что \hat{a} совпадает с сечением \hat{a}_i на $d(B_i)$. Понятно, что в силу определения l-идеала 0_p достаточно показать, что $a*a_i \in P$. Пусть P - произвольный первичный l-идеал из $d(B_i)$, а j=1,...,k - произвольный индекс. Допустим, $P \in d(B_j)$, тогда в точке P сечения \hat{a}_i и \hat{a}_j совпадают с σ , следовательно, $\hat{a}_i \equiv \hat{a}_j (\text{mod} 0_p)$. Из $0_p \subseteq P$ получаем $\hat{a}_i \equiv \hat{a}_j (\text{mod} P)$, откуда $\hat{a}_i \wedge b_j \equiv \hat{a}_j \wedge b_j (\text{mod} P)$. Пусть сейчас $P \notin d(B_j)$. Тогда $B_j \subseteq P$ и $b_j \in P$. В этом случае $\hat{a}_i \wedge b_j \equiv \hat{a}_j \wedge b_j (\text{mod} P)$ в силу положительности элементов a_i, a_j и выпуклости l-идеала P. Получили, что $\hat{a}_i \wedge b_j \equiv \hat{a}_j \wedge b_j (\text{mod} P)$ справедливо для любого $P \in d(B_i)$. Используя дистрибутивность решетки S, получаем:

$$a = (a_1 \wedge b_1) \vee ... \vee (a_k \wedge b_k) \equiv$$

$$\equiv (a_i \wedge b_1) \vee ... \vee (a_i \wedge b_k) =$$

$$= a_i \wedge (b_1 \vee ... \vee b_k) = a_i \wedge b = a_i \pmod{P}.$$

Следовательно, S изоморфно drl-полукольцу всех глобальных сечений пучка ($\Lambda(S), SpecS$). Теорема доказана.

Список литературы

- 1. *Keimel K*. The representation of lattice ordered groups and rings by sections in sheaves // Lect. Notes Math. Springer-Verlag, 1971. № 248. P. 2–96.
- 2. *Rao P. R.* Lattice ordered semirings // Math. Sem. Notes, Kobe Univ. 1981. Vol. 9. P. 119–149.

Физико-математические науки

3. *Golan J. S.* The theory of semirings with applications in mathematics and theoretical computer science. Longman scienificand tehnical. Harlow, 1992.

- 4. *Ворожцова Т. А., Чермных О. В.* Арифметические свойства drl-полугрупп // Математический вестник педвузов и университетов Волго-Вятского региона. Вып. 16. 2014. С. 74–81.
- 5. *Чермных О. В.* О drl-полугруппах и drl-полукольцах // Чебышевский сборник. 2016. Т. 17. Вып. 4. С. 167–179.
- 6. *Чермных В. В.* Функциональные представления полуколец // Фундаментальная и прикладная математика. 2012. Т. 17. № 3. С. 111–227.

ЧЕРМНЫХ Василий Владимирович — доктор физико-математических наук, доцент, профессор кафедры фундаментальной и компьютерной математики, Вятский государственный университет. 610000, г. Киров, ул. Московская, 36.

E-mail: vv146@mail.ru

ЧЕРМНЫХ Оксана Владимировна — старший преподаватель кафедры фундаментальной и компьютерной математики, Вятский государственный университет. 610000, г. Киров, ул. Московская, 36.

E-mail: vv146@mail.ru