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AHHOTanus. B pa6oTe ncciey0TCsl peTpaKLUuK NPsIMOTo MPOU3BeIeHN ABYX KOHEeUHbIX Lemnei. [log peTpak-
el pelmeTKH A TOHUMAETCs UEMIOTEHTHBIN roMoMopdu3M A B ce6s. HalijeHa 1 fokasaHa popMyJia s Mojcde-
Ta YKC/a BCeX peTPaKIMiI MPSIMOTo NPOU3BEeJeHUs BYX3JIEMEHTHOH LIeNH Ha N-3JIeMEHTHYIO LIEMb.

KirouyeBble cj1i0Ba: peTpaKnud, n-aJieMeHTHad ellb, YUucjaa CDI/IGOHa‘{‘{I/I, npAaMoe rpousBejeHue uenef/’l.

1. BBegeHue. UcxoaHble NOHATHA. OCHOBHBIM Pe3yJIbTaTOM paboThl fABJsgeTcs dopmyaa (20) aas
4yycJla BCeX peTpaKL Ui NpsMOro Nporu3BeleHusl ABYX3JeEMEeHTHOM Lielu U n-3JleMeHTHOU nenu. Takxke OT-
MeTHM HOBOE J1I0Ka3aTeJJIbCTBO TeopeMbl A 0 YHCJ/Ie BCEX PeTPaKI Ui MPOXU3BOJIbHON KOHEYHOH 1ieMny, B KO-
TOPOM IIPUMEHSIIOTCSI BCIOMOTraTe/ibHble QYHKIUHY, IPE/ICTaBJSIOLIMEe CAMOCTOSTE/IbHBIN UHTEPEC.

Iosypewemkotl Ha3bIBaeTCs UAEMIIOTEHTHAsA KOMMYTaTHUBHadA nojyrpyimna. Eciu B nosyperuetke (4, +)
3a/aTh 6MHApHOE oTHolleHUe < GopMysoH: a< b&a+b=b s 06bIX a, be A, TO NOJYy4YUM yHOpsiZ04eHHOe
MHOXECTBO (4, <), B KOTOpoM a+b=sup{a, b} a5 Bcex a, be A, Ha3bIBaeMoe gepxHell no/1ypewemxoll.

Pewemkoli Ha3bIBaeTCsA ajredpandeckas CTpyKTypa (4, +, -), [ KoTopoH (4, +) u (4, -) — moaype-
LIEeTKH U ONepalyU CI0XKEeHUs + U YMHOXKEHUS - CBSI3aHbl 3aKOHAMU INOTJIOIeHUs X+Xy=x U x(x+y)=x. [Ipu
3TOM COOTBETCTBYWOILIAs MoJypelieTKe (4, +) BepxHss noJsypemeTka (4, <) y0BJIeTBOPsIeT PaBEHCTBY
a-b=inf{a, b} s mo6bIx a, be A. PellleTKa Ha3bIBaeTCsl pewemkol ¢ Hy/ieM, eCIM OHA 06J1a/1aeT aiAUTUBHO
HelTpaJbHbIM (PaBHOCUJIBHO, MyJIbTUIIJIMKATHBHO MOTJIOLAOMM, HAUMeHbIIUM) 3/1eMeHTOoM 0.

Pempakyueli pewemku A Ha30BeM JIOG0H penieTOYHbIA roMomopodusMm e: A—A, TaKOH, 4YTO
e(e(x))=e(x) pnsa Bcex xe X. BMecTo e(x) 6yeM mucaTb NPOCTO eX. JJeMeHT X€ A Ha3bIBAeTCs Henoodsuic-
HbIM 3/1EMEHMOM PeTPaKLUHU e, eC/IU ex=X, B IPOTUBHOM CJIy4ae 3JIeMEHT X 6yZleM Ha3blBaTb NOOBUMCHbIM
3/1eMeHMoM PeTPaKIUU e. JJIEMEHTHI eXx, XE A, CyTb B TOUHOCTH HENOABXKHbIE 3/IEMEHThI PETPaAKIUHU e.

Llens — 3TO JIMHENHO yHOPS/J0UEHHOE MHOXKECTBO. SICHO, 4TO JIt06asi LieNb SIBJISETCS PeLIeTKOH.

0603HauuM yepe3 C, n-3JEMEHTHYIO Liellb U paccCMOTpUM mnpsimoe mpousBefeHue C,xCn={(a, b) |
ae Cy, be Cp}. fAcHo, uTO CxCry 6yZIET pENIETKON U3 NM 3J1IEMEHTOB.

llesibt0 JaHHOM paboThI ABJISETCA BIBOJ, GOPMYJIbI IS OACYETA BCeX peTpakLui peleTku CpxCa.

3a/ilaya HaxoX/JeHUs YHCJIa peTpPaKLMi KOHEeYHbIX pellleTOK BO3HUKJIA B paMKax TEOPUHU NOJAYMOAY-
Jiell Haj moJiykoJbLiaMu. [IpuBejeM HeKOTOpble UCXOAHbIE IOHATUS 3TOU Teopud [7, chapter 14].

Ilonykonbyom HasblBaeTcs ajiarebpauyeckas CTPYKTypa (S, +,-) ¢ KOMMyTaTHBHO-aCCOLMaTUBHOMN
onepanMel CJI0XKeHUS + M acCOLLMAaTUBHOM omepanyeil YMHOXEHUS -, JUCTPUOYTUBHOW OTHOCHUTEJBHO
CJ10XKeHUs ¢ 06enx cTopoH. 0611asa Teopus MOJyKOJel, U3JI0KeHa B U3BeCTHOM KHHUre ['osana [7]. [Toay-
KOJIbL|aM C U/IEMIIOTEHTHbIM YMHOXKeHHEeM NOCBsiIlleHa Halla pa6oTa [2].

Hoaymodysem Had noaykoabYoMm S, WU IPOCTO S-no/aymMody/ieM, Ha3blBAeTCsl KOMMYTATUBHAs MOJIY-
rpynna (4, +) BMecTe c oTobpakeHueM SXA — A, (s, a)—sa, 06J1aJal0MUM CeIVIONUMHA CBOHCTBaMHU (/s
JIIOOBIX S, te Su a, be A):

(1) (s+t)a=sa+ta;

(2) s(a+b)=sa+sb;

(3) (st)a=s(ta).

© BeutomoB EBrenuii MuxaitsioBuy, [leTpoB AHpeit AnekcanapoBuy, 2025
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3ameuanmue 1.1. M1 He nipefniosiaraeM Haau4yus HyAs1 0 ¥ efuHUIBL 1 B MOJIYKOJIbLE S U CYLIECTBO-
BaHUA HyJssa 0 B KOMMYTaTUBHOW NOJyrpyIle A, HO Jlake eCJIu TakoBble B S U A MMelOTCsA, TO AJs S-
MoJIyMOJyJiel A He NIpe/iTioJIaraeTcs BbINOJHEHUE CIeAyoNIUX yeaoBui: 1la=a, 0a=0, s0=0 (Vse §, Vae A).

OTobpaxeHue fi A—>B S-noaymoaysa A B S-noayMoAy/ib B Ha3bIBaeTCs S-20MOMOPEPUIMOM, eCIv
fx+)=f(x)+f(y) u f(sx)=sf(x) pas mo6bIx X, ye A u s€ S. Ecnu S-roMmoMopdusm S-nosrymoysieit siBisieTcs
B3aMMHO OJJHO3HAaYHbIM OTO6pa*KeHUeM, TO OH Ha3blBaeTCs S-U30MopPu3moM. S-u30MopHbIe NOJyMOAY-
JI1 06/1a4a10T OAHUMU U TEMHU Ke abCTPaKTHBIMHU CBOMCTBaMHU.

[IycTb e - eHTpaJbHbINA MyJbTUILJIMKATUBHBINA HJIEMIOTEHT MOJIYKOJIbLA S, T. €. ee=e U Vse S es=se.
Ha sto60M S-niosrymoayJie A 3jieMeHT e JIeMCTBYeT Kak UJeMIIOTeHTHBIN S-roMoMopdusm e: A—A 1o npa-
BUJy: e(x)=ex ajs Bcex x€ A. Takoit S-roMoMopdHr3M e Ha30BeM pempakyuell S-noaymoayJs A; ero o6pas
e(A4) 6yzer noamosaymoAayseM S-moJayMoAyns A, COCTOSILMM B TOUYHOCTH U3 HENOJBUKHBIX 3JIEMEHTOB
oTo6pakeHHUd e. B psaje ciydaeB noanonymoayb e(A) oA4HO3HAYHO onpefenseT caM S-oayMmoayb A. B
YaCTHOCTH, 3TO MPOUCXOJUT TOT/a, Koraa S={e} - oHO3/IeMeHTHOe MOJYKOJIbLO, (4, <) - KOHeYHas MOoJIy-
pemieTka (x+y=sup{x, y})), Vxe A ex<x unn Vxe A x<ex. B pabote [3] HaljieHO YHUCIO TAKHX IMOMAPHO
Heu30MOpPPHBIX NMOJYMOYIeH A C YUCIOM 3JIEMEHTOB, He IPEBOCXOAALIMM 5. B ciiydyae koHeuHOU 1enu A
ee noJuens B coBnazaeT c 06pa3oM e(A), Booblie roBops, pa3JIMuHbIX peTpaKkLuii e.

OTHoOlLIEHHUE 5KBUBAJIEHTHOCTHU P Ha pelneTke A Ha3blBaeTcsl KoOHepysHYyuell Ha A, eciau apbu cpd BJie-
KyT (a+c)p(b+d) u (ac)p(bd) pasi mobbIX a, b, ¢, de A (AOCTATOYHO CUUTATH c=d).

OTMeTHUM, UTO KaXK/Jasi peTpaKuus e pelieTKU A MOpPoXKJaeT KOHrpyaHIHio p(e) Ha peuieTke A 1o
NpaBUIy

xp(e)y o3HavaeT ex=ey NpH JIOOLIX X, Yy A.

2. Yucsio peTpakuuid KOHeYHO! nenu. HanoMHuM, 4yTo yuciamu Pu6oHay4u Ha3blBAOTCA YUCIA:
Fo=0, F1=1, F>=1, F3=2, F4=3, F5=5, F¢=8, ...,
06pa3oBaHHble MO NMpaBUNy F,=F,1+F,» JJ11 BceXx HATypaJbHbIX 4ucea h>2. UHbopmanuio o yuciaax
®uboHaAYYHU MOXKHO HAUTH, HAaNpUMep, B naparpade 6.6 KHUrH [5].

Teopema A [8, p. 228]. Yucao scex pempakyuli n-anemeHmHol yenu pagHo yucay Pubonauuu Fa, ¢
HOMEPOM 21.

Teopema A ony6JirikoBaHa J. M. Howie B 1971 roay. B cratbe [9, Corollary 4.6] npeacTtaB/ieHo Jjpyroe
Jl0Ka3aTeJbCTBO 3TOr0 pe3y/bTaTa.

ABTOpaM M3BECTHBI /1Ba JJOKa3aTe/JbCTBa JaHHOM TeopeMbl, OTJIMYHbIe OT YKa3aHHbIX BhIlIe. [lepBoe
13 HUX OMyOJIMKOBAHO B paborTe [1, 3agayva 3.3.1, c. 34-35].

[IpuBeieM BTOPOE J0Ka3aTeNbCTBO.

JlokakeM CHaudaJsia psij BCMOMOraTeJbHbIX pe3yJIbTaTOB.

OTOXAECTBUM N-3JIEMEHTHYIO Liellb C OTPE3KOM NepBbIX N HATYPa/bHbIX YHCeJI C eCTECTBEHHBIM I10-
pAAKOM:

1<2<3<..<n-1<n. (1)

JJ1s1 HaTypaJIbHBIX YK cesl m< n MoJI0KUM:

R(n) - 4uciio BcexX peTpaKkLUil n-37ieMeHTHOH 1ieny;

R(n, m) - 4ucso peTpakLUi n-ajieMeHTHOM 1leNy C M HeloJBUKHBIMU 3J1eMeHTaMU;

L(n) - 4ucyo Bcex peTpakuuil n-371eMeHTHOU LieNU C HENOABMKHBIMU 3JIeMeHTaMu 1 u n> 2;

L(n, m) - 4yucyio peTpakuuil n-3jieMeHTHOH LeNU C m> 2 HeNoJBUKHbIMU 3J1eMEHTAaMHU, Cpeu KOTO-
pbix 1 u n.

UmeeMm:

n n
R(m)=Y_R(n, m) uL(n)= Y L(n, m). 2)
m=l1 m=2
Jlerko BuJeTh, 4yTo L(n, 2)=n-1 as 11060r0 HAaTypaslbHOIO YKcaa h> 2. [103ToMy YHCI0 peTpaKLui
nenu (1) c m HemoABWKHBIMH YUCAAMH 1< i2< i3< ... < i; PABHO
(f2-i1) (i3-12)"..' (im=im-1)- 3
Takue peTpaknyu O6yZieM Ha3blBaThb pempakyusimMu muna ii< i;<iz< ... <im, @ YUCJIO0 Im—i1+1 - Ux
dauHoll.
[ToaTomy uucao R(n) paBHO cyMMe NMpou3BeJeHUH (3) Mo BCeBO3MOXKHBIM BbIOOPKAM 1< i2< i3< ...
< I;y U3 NePBBIX N HATYpaJbHBIX YHCEJL.
Hanee nokaxeM psj dopmya s uuced L(n, m) u R(n, m).
Cnepnyrouye paBeHCTBA OUYE€BU/AHBI (/11 COOTBETCTBYIOIUX HATYPAJbHbIX N):
R(n, 1)=n, R(n, n)=1, L(n, n)=1, R(n, n-1)=2n-2, L(n, n-1)=2n-4. (4)



Mamemamuueckuil secmHuk Bamckozo 2ocydapcmeenHozo yHusepcumema, 2025, Ne 2 (33)

IIpeasioxenue 2.1. /115 1106b1X HAMYPAALHBIX YUCEA N= M= 3 UMeeM:
n—m+?2
Lin,m)= Y. (k—1DL(n—k+l, m—1). (5)
k=2
Jloka3zaTe/bCcTBO. Bo3bMeM NpOU3BOJIBHYIO PeTPAKLIMI0 THUNA 1=i1< I2 <i3< ... < Ip=N. DJE€MEHT Iz MO-
JKeT IPUHUMATD JI00ble 3HAYEHUS K OT 2 0 n—m+2 BKJIIOUUTENbHO. JIerko BUJETh, YTO YUC/IO0 YKAa3aHHBIX
peTpakuui npu iz=k paBHo npousBeaeHuto (k-1)L(n-k+1, m-1). Tem cambIiM noJsiydaeM popmyay (5).
Ilpeasioxenue 2.2. /1151 1106bIX HAMYPAAbHBIX YUCEA N> M2 2 UMeeM:

n
R(n,m)= Y (n—k +1)L(k,m). (6)
k=m
Joka3aresibcTBO. Jl/iHA Kk JII060# peTpaKLUMHU THIIA i1< [2<i3< ... < I; N-3JIeMEHTHOH 1[eNy NpUHUMa-
eT 3HayeHHUs OT m Ji0 N BKJIKYHUTEJNbHO. YMC/I0 TaKUX peTpakyuil AJuHbl k paBHo (n-k+1)L(k, m). IloaTomy
uMeeT Mecto popmy.a (6).
IIpeasoxenue 2.3. /115 1106020 HAMYPAILHO20 YUCAA N> 3 8€PHO PABEHCMEBO
L(n, 3)=n(n-1)(n-2)/6=C>. )
Joka3zaresbcTBO. C yueToM popmyJibl (4) no popmyie (5) nonydaem:

L(n, 3)=1-(n-2)+2(n-3)+...+(n-2)-1=
=(n-1-1)+2(n-2-1)+...+(n-2)(n-(n-2)-1)=
=(n-1)(1+2+...+n-2)-(12+22+...+(n-2)?)=
=3(n-1)(n-2)(n-1)/6-(n-2)(n-1)(2n-3/6=

=(n-2)(n-1)(3n-3-2n+3) /6=(n-2)(n-1)n/6=C .

IIpeasioxenue 2.4. /115 1106b1X HAMYPAALHBIX YUCEA N> M BEPHO PABEHCME0
R(n, m)=L(n+1, m+1), (8)

e uacmuHocmu, R(n, 2)=L(n+1, 3)= C2+l'

JelcTBUTE/IbHO, 3allMCaB cjaraemMble npaBoil yactu ¢opmyJnl (5) aaa L(n+1, m+1) B o6paTHOM IO-
ps/iKe, MOJyYUM IpaByto yacTb ¢opmyJibl (6), T. e. 3HaYeHue R(n, m).
IIpeasioxeHnue 2.5. /115 1106020 HAMYPAALHO20 YUCAA N> 2 UMEEM:
L(n)=R(n-1). 9
B camomM Jiesnte, B cuaty dopmya (2) u (8) mosnyvyaem:
L(n)=L(n, 2)+L(n, 3)+...+L(n, n)=R(n-1, 1)+R(n-1,2)+...+R(n-1, n-1)=R(n-1).
IIpepsioxenue 2.6. /115 1106bIX HAMYPAAbHbIX YUCEA N> M2 2 8ePHO pABEHCMEBO

n
R(n,m= Y (n—k+DR(k —1,m—1). (10)
k=m
Jloka3aTe/IbCTBO BbiTeKaeT U3 popmy (6) u (8).
IIpeasioxenue 2.7. /115 1106020 HAMYPAILHO20 YUCA N> 3 8€PHO PABEHCMEBO
R(n, n-2)=2n2-7n+6. (11)
Jdoxka3atesbcTBo. [To popmyine (8) R(n, n-2)=L(n+1, n-1). [loaToMy pacCMOTPUM peTPaKLMH AJTHUHbI
n+1 ¢ AByMs MOJBIKHBIMU 3JIEMEHTAaMH, He paBHbIMU 1 1 n+1. Yucso pacrnpeesneHnit JByX 3JIeMEHTOB Ha
n-1 mecrtax paBHO uucay (n-1)(n-2)/2 couetanuit us n-1 no 2. Ec/iv noABWKHbIE 3JIEMEHTHI PACIIOJIOXKe-
HbI psAZIoM, TO nosiydaeM 3(n-2) peTpakiidil. B npotuBHoM ciaydae umeeM 4((n-1)(n-2)/2-(n-2)) peTpak-
1uil. B pesysabTaTe mosyyaem:
R(n, n-2)=2(n%-3n+2-2n+4)+3n-6=2n2-7n+6.
Ucnonbsys dopmyint (4), (5), (7), (8) 1 (11), Berurcaum 3HadeHus L(n, m) npu n< 9 u 2< m< n. UmeeM:
L(2,2)=1,
L(3,2)=2,L(3, 3)=1,
L(4,2)=3,L(4,3)=4,L(4,4)=1,
L(5,2)=4, L(5, 3)=10, L(5, 4)=6, L(5, 5)=1,
L(6,2)=5, L(6, 3)=20, L(6,4)=21, L(6,5)=8, L(6, 6)=1,
L(7,2)=6, L(7, 3)=35, L(7,4)=56, L(7,5)=36, L(7, 6)=10, L(7, 7)=1,
L(8,2)=7,L(8, 3)=56,L(7,4)=126, L(8, 5)=36, L(8, 6)=55, L(8, 7)=12, L(8, 8)=1,
L(9,2)=8, L(9, 3)=84, L(9, 4)=252, L(9, 5)=330, L(9, 6)=220, L(9, 7)=78,
L(9,8)=14u L(9, 9)=1.
WMes HaliieHHbIe 3HaYeHUs GyHKUMH L(n, m), no popmyJie (8) mosydyaem:
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R(1,1)=1,
R(2,1)=2,R(2, 2)=1,
R(3,1)=3,R(3, 2)=4, R(3, 3)=1,
R(4,1)=4, R(4, 2)=10, R(4, 3)=6, R(4, 4)=1,
R(5,1)=5, R(5, 2)=20, R(5, 3)=21, R(5, 4)=8, R(5, 5)=1,
R(6,1)=6, R(6, 2)=35, R(6, 3)=56, R(6, 4)=36, R(6, 5)=10, R(6, 6)=1,
R(7,1)=7,R(7, 2)=56, R(7, 3)=126, R(7,4)=120, R(7, 5)=55, R(7, 6)=12, R(7,7)=1,
R(8,1)=8, R(8, 2)=84, R(8, 3)=252, R(8, 4)=330, R(8, 5)=220, R(8, 6)=78, R(8, 7)=14 u R(8, 8)=1.
CyMmMupys no m 3HaueHus1 R(n, m) B IpeAblAYLIHMX CTPOKAX, ojaydaeM 1o ¢popmy.ie (2):
R(1)=1, R(2)=3, R(3)=8, R(4)=21, R(5)=55,
R(6)=144, R(7)=377, R(8)=987.
MpbI BUAMM, UTO HalpallMBaeTCs CJAeAyiollee peKyppeHTHoe cooTHoueHue: R(n)=3R(n-1)-R(n-2)
[pY BCeX HAaTYpasIbHbIX N> 3.
Ilpeasioxenue 2.8. /15 1106020 HAMYPAALHO20 YUCAA N> 3 UMeeM:
R(n+1)=R(n)+2R(n-1)+3R(n-2)+...+(n-2)R(3)+(n-1)R(2)+nR(1)+n+1. (12)
Joka3saresbCcTBO. Pacniuiiem R(n+1) Ha ocHoBaHUuM dopmy.a (2) u (10):
R(n+1, 1)=n+1
R(n+1, 2)=nR(1, 1)+(n-1)R(2, 1)+(n-2)R(3, 1)+...+3R(n-2, 1)+2R(n-1, 1)+R(n, 1)
R(n+1, 3)=(n-1)R(2, 2)+(n-2)R(3, 2)+...+3R(n-2, 2)+2R(n-1, 2)+R(n, 2),
R(n+1, n-1)=3R(n-2, n-2)+2R(n-1, n-2)+R(n, n-2)
R(n+1, n)=2R(n-1, n-1)+R(n, n-1)
R(n+1, n+1)=R(n, n).
[IpocymMupyeM nocsaefoBaTe/IbHO BbIIIMCAaHHbIE pAaBEHCTBA NOYIEHHO, HAUUHAas CO BTOPOTO PaBeH-
CTBa U MePBbIX C KOHIIA C/IaraeMbIx, a 3aTeM pru6aBuM n+1. B pe3ysbTaTe Mosy4uM paBeHCTBO (12).
IIpeasioxeHnue 2.9. /115 1106020 HAMYPANLHO20 YUCAA N> 3 UMeeM:
R(n)=R(n-1)+3R(n-2)+2R(n-2)+2R(n-3)+...+2R(1)+2. (13)
Joka3aTesibCcTBO. /Iy 110601 peTpaKLUM e n-3JeMeHTHO!U 1iend (1) BbINOJIHSAETCS POBHO OJHO U3
C1eyI0IHX YCIOBU:
1) e(1)=1 u e(n)=n;
2)e(1)>1ue(n)<n;
3)e(1)=1wue(n)<n;
4) e(1)> 1 ue(n)=n.
Yucso petpakuui e ¢ yciaosueM 1) paBHo R(n-1) no popmyie (9).
fAcHo, 4TO YKUCI0 peTpaKLUl e ¢ ycaoBueM 2) paBHo R(n-2).
PaccmoTtpum ycnoBue 3). Yucio k=e(n) npuHuMaeT 3HayeHue oT 1 g0 n-1. Yucno Takux peTpakuuin
e, B cusy dopmyinl (9), paBHo 1+R(1)+R(2)+...+R(n-2).
YcnoBue 4) cuMmMeTpudHO ycaoBuio 3). [loaToMy uncio peTpakLuil e ¢ ycjoBUeM 4) Takke paBHO
1+R(1)+R(2)+...+R(n-2).
CyMMupys yKa3aHHble BbIpaXKeHHUs], I0JIy4aeM UCKOMoe paBeHCTBO (13).
IIpeasoxenue 2.10. Ja5 1106020 HAMYPAAbHO20 YUCAA N= 3 8ePHO PABEHCMBO
R(n)=3R(n-1)-R(n-2). (14)
Jloka3aTeJIbCTBO NpoBeJeM MHAYKIUel no n. [IpeAno/iokuB cnpaBeIMBOCTb paBeHCTBaA (14) fJisd Bcex
HaTypasibHbIX yucesa k (BMmecto n), 3<k<n, jokaxeMm ero ajas n+l. IloacraBuB B paBeHcTBe (12)
R(k)=3R(k-1)-R(k-2) nnis Bcex k OT 3 J10 n, oJiy4aeM:
R(n+1)=3R(n-1)-R(n-2)+2(3R(n-2)-R(n-3))+...+(n-2)(3R(2)-R(1))+
(n-1)R(2)+nR(1)+n+1=
=3[R(n-1)+2R(n-2)+...+(n-2)R(2)+(n-1)R(1)+n]-
[R(n-2)+2R(n-3)+...+(n-2)R(1)+n-1]=3R(n)-R(n-1),
nockoJibKy (n-1)R(2)=3(n-1)R(1) u nR(1)+n+1=2n+1=3n-(n-1).
[IpenyiokeHHe JOKA3aHO.
Jlemma 2.1. Fpi2=3F—Fn_2 0415 1106020 HAMYpaabHO20 Yucaa n> 3.
B camom gene,
Fn+2=Fn+1+Fn=(Fn+Fn—1)+Fn=(Fn+Fn—1+Fn—2)+Fn_Fn—2=3Fn_Fn—2-
Tenepsb
Jloka3aTe/ibcTBO TeopeMbl A BbiTeKaeT u3 ¢opmysbl (14), semmbl 2.1 u paBeHCTB R(1)=1=F3,
R(2)=3=F,.
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CneactBue 2.1. [locaedosamenvHocms uucesa R(1), R(2), ..., R(n),... npedcmasasem co6oii nocaedo-
samesibHOocMb yucea PuUbOHAYHU € YeMHBIMU HAMYPAAbHLIMU HOMEPAMU.
CnepctBue 2.2. Ha n-asieMeHmMHOU yenu — ¢ moYHocmbuio 4o usomopgpusma - cyujecmsyem posHo Fzp
nosiymodyeti Ha0 00H03/1eMEHMHbIM NOAYKOAbYOM.
CnepactBue 2.3. J15 1106020 HAMYPAAbHO20 YUCAA N2 3 UMEEM:
R(n)=2R(n-1)+R(n-2)+..+R(1)+1. (15)
JokasaresbcTBO. [losicTaBuM B paBeHcTBa (13) u (14) n+1 BMecTo h. [IpupaBHSieM NpaBble YacTH
N0JIyYeHHBIX paBeHCTB. Beipa3uB R(n) yepes ocTa/ibHBIE CJ1araeMsle, OJy4YUM paBeHCTBO (15).
CnepctBue 2.4. /J15 1106020 HAMYPAAbHO20 YUCAA N2 3 UMEEM:
Fon=2Fzn-2+Fopa+..+Fp+1. (16)
B cuny Teopembl A dpopmyaa (15) npeBpamaercs B popmy.y (16).
Anasornyno, ¢popmyJibl (12) u (13) AalOT COOTBETCTBYIOIIME paBeHCTBA A yuces OUOGOHAYYHU C
YeTHbIMU HOMepaMH.
3ameuyanue 2.1. PaBenctBa (12)-(15) npeacTaB/sSlIOT cCO60M pEKYPpPEHTHbIE COOTHOILEHHUS AJIs
dyHknuu R(n), Ho TOJbKO paBeHCTBO (14) sABJsieTcs «CBepHyTOW» dopMysiod assa R(n) ¢ HavdaJbHbIMH
ycaoBusiMu R(1)=1 u R(2)=3.

3. Yucsi0 peTpakuuii IpAMoro npou3sBejeHus ABYX3JIEMEHTHOM U nN-3/ieMeHTHOM uenei. Pac-
CMOTpUM NpsiMoe npousBefieHue AXB peuteTok A u B. [lycTh e1 U ez - peTpakuuu pemetok A u B cooTBeT-
ctBeHHO. Torjia oTo6paxkeHue e1xez: AXB—AXB, onpeeneHHoe GopMyJion

(exxez)((a, b))=(e1qa, ezb) npu ae A v be B,
SIBJISIETCS peTpakLuen pemeTky AXB.

Jlemma 3.1 [4, c. 43, Teopema 13]. [IpousgosbHass KoHepysHYusi p Ha pewemke AXB umeem gud
P=p1Xp2, 20e p1 (p2) - koHepyaHyus Ha pewemke A (B) u (a1, b1)(p1xpz)(az, b2) o3Hauaem aipiaz u bip2b; das
JA106bIX a1, d2€ A u by, boe B.

[lycThb p — IpoOHU3BOJIbHAsA KOHTPYIHLIMS Ha NPAMOM Npou3BeZieHUU AXB pemeTok A v B. B koHTekcTe
jseMMbI 3.1 p=p1Xxp2. [IpefnosouM, UTO KOHTPyIHLHUS P1 (P2) UHAYLUPYETCS HEKOTOPOU peTpakiuvell e
(e2) pewtetku A (B): pi=p(e1) u p2=p(e2). PeTpakuus ei1xe; mopoxJaeT UCXOAHYIO KOHTPYIHIUIO P, TO €CTh
p=p(e1xez). 3aMeTUM, YTO KOHTPYIHLUSA P MOXKET UHAYLIMPOBATbHCS peTpakLuel peleTku AXB, 0OTIU4YHOU
OT peTpakLUi BUja e1Xez. PeTpakuuu Buja eixe; 6yeM Ha3blBaTb KAHOHUYECKUMU pempaKkyusMu, B Ipo-
THUBHOM CJIyyae — HeKAHOHU4eCKUMU.

Jlerko BU/JIeTb, YTO UMEET MECTO

Jlemma 3.2. Eciu A u B - KOHeYyHble pewlemku, uMerowue coomeemcmeenHo k u | pempakyuil, mo pe-
wemka AxB umeem pogHo k-l kaHOHUYeCcKUX pempaKyull.

IIpepnoxenue 3.1. [Iycmo A, B - npousgo/ibHble peuwiemku. /11 mo2o 4mobbl pempakyust e peuemku
AXB 6b11a KAHOHUYeckoll, HE06X00UMO U A0OCMAMOYHO, YMO6bl 8bINOAHIAO0CHL CAedyouee ymaepicdeHue: ec-
au p(e)=pixpz2, ai, az€ A, b1, be B, e((a1, b1))=(a1, b1) u e((az bz))=(az, b2), mo aipiaz=ai=az u
b1p2b2:>b1:b2.

Joka3aTesibcTBO. Heob6xodumocme. JlonycTuM, YTO e=e1Xe; AJI1 PETPAKLUU e1 Ha pelieTKe A U pe-
TPaKLMHU ez Ha pellleTKe B U BBINOJIHSAETCS YCI0BUe U3 YKa3aHHOTO B GOPMYJIMPOBKe yTBepxAeHUs. Toraa
p1=p(e1), a1=e1(a1), az=e1(az), crano 6bITh, a1p1az < ei1(ai)=ei(az). AHaIOTUYHO, b1p2b2 = b1=b.

HocmamoyHocmy. IlycTh BepHO yTBepKJeHUe U3 GOPMYJIUPOBKYU JAaHHOIO Npej/ioxeHus. g -
61X ae A u be B nosoxuM e1(a)=pi(e((a, b))) u ez2(b)=pz2(e((a, b))), rae p1((x, ¥))=x u p2((x, ¥))=y n1s Bcex
xe A u ye B. IlokaxkeM, 4To 3Ha4yeHHe e1(d) He 3aBUCUT OT BTOPOH KoopAuHaThI b napsl (a, b). Boabmem
napy (a, ¢), rae ce B. Ilockoabky e((a, b))p(a, b) u e((a, c))p(a, c), To pi(e((a, b)))piapipi(e((a, c))). [loaTo-
My pi(e((a, b)))=pi(e((a, c))). AHanOrMYHO JOKA3bIBAETCS, YTO 3HAUeHUe e2(b) He 3aBUCUT OT NEPBOM KO-
opAuHaThl napel (a, b). Jlerko BUAETH, YTO OTOOPAKEHUS €1 U ez CIYXKAT peTpaKkLUsIMU pelieToK A u B co-
OTBETCTBEHHO. PaBeHCTBO e=e1xe; 04EBUJHO.

Ipumep 3.1. Haiigem Bce peTpakuuu pemetkd C2xC2={(0, 0), (0, 1), (1, 0), (1, 1)}, rae C>={0, 1} npu
0< 1. llenb C; MeeT TpHU peTpaKkuM: KOHCTaHTHble A—{0}, A—>{1} ¥ TOX/IeCTBEHHYI0, U JIB€ KOHT'PY3HIIUH:
OTHOIlIEHHE PaBeHCTBA U OAHOKJACCOBYI0. [loaToMy perieTka C>XC; 06/1afjaeT AeBITbI0 KAHOHUYECKUMH
peTpakLUaIMHU U YeTbIpbMs KOHIPY3IHLUAMU. OZJHOKJIACCOBAsk KOHIPY3HL s Ha pelieTKe (2X(C2 TOPOXKAaeTcs
YeThIPbMS PETPAKIHUAMH, OTHOLIEHHE PABEHCTBA — TOJIBKO TOX/AECTBEHHOW peTpakijyeil, Kaxkaas U3 JIByX
JIBYXKJIACCOBBIX KOHTPY3HLIUHI - 2 KAHOHWYECKUMU peTpakuusiMU. BosbMeM Ha pelueTke (2XC2 KOHTPY3H-
o p ¢ AByMs kiaaccamu {0, 1}x{0} u {0, 1}x{1}. U paccMoTpuM oTobpaxkeHue e: C2xCr—>C2Xx(,, nepeBojsiiee
kJjacc C2x{0} B anemeHT (0, 0), a kinacc C2x{1} - B anemeHT (1, 1). [lo npeoxkenuto 3.1 e 6y1eT HEKaHOHUYE-
CKOM peTpakuueid pemeTku (2XC, TOPOKAAOIEH KOHTPY3HLUIO P. AHAJIOTMYHO, JBOMCTBEHHAs K € HeKa-
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HOHHYeCKas peTpaKkLysa NOpoXAaeT KOHIPYaHLMIO ¢ ABYMs kiaaccaMu {0}xC; u {1}xC. Takum obpasomM, pe-
meTka (2xCz vMeeT 11 peTpaKuui, BKIOYast /jBe HEKAHOHUYECKHe PETPaKLUH.
0603HauuM Ret(n, m) - ynucio Bcex peTpaky Uil NpsIMOTo NPOU3BeAEHUS nN-3/1eMeHTHOU Lenu C, U m-
aJieMeHTHOU uenu Cpn U HaillfileM pekyppeHTHy0 dopmy.y ais Ret(n, 2) yucia BceX peTpakLUil peleTKu
C=CxCs.
[To ieMMe 3.2 YKCJI0 BCeX KAHOHUYECKUX peTpakuuil Ha C paBHO Fa, F4=3F2,.
Yucsio HeKaHOHUYECKUX peTpakLuil Ha C B C/1y4dae, ec/id KOHrpysHLus neny C, 0AHOK/IaccoBasi, paBHO
(n-1)+(n-2)+...+42+1=n(n-1) /2.
Janee 0603Ha4YuM f{n) - YUCI0 HEKAHOHUYECKUX peTpaKUuii Ha C B c/1y4ae, eC/IM KOHTPYIHIUS Leln
Cn HEOJHOK/IAaCCOBasl.
Jlemma 3.3. J51 1106020 HAMYpPAALHO20 YUCAA 22 cnpagedausa popmyaa
[N =1-[fn-1)+Fo-0)]+2:[f(n-2)+F2(n-2)] + ...+ (n-1) - [f(1) +F2]. (17)
Jloka3zarebcTBO. 0603HaYUM Lienb Cp Kak 1< 2< 3< ... < k< ...<n-1<n, a uenb C2, COOTBETCTBEHHO,
a<b. HaiizeM Bce KOHrpysHU MU Ha C, NOpoxAaroliie HeKaHOHUYEeCKHe peTpakL Uy, B c/lydyae, KOrAa KOH-
rpysHuus uenu C, HEOAHOKJIACCOBas. FICHO, YTO MPU 3TOM KOHTPY3HLUs HA C2 JOKHA ObITh OJHOKJIACCO-
BOU. PaccMOTpUM KOHI'PYaHLIMHU Ha Cp, OJHUM U3 KJIACCOB KOTOPBIX ABJASAETCA 0TPe30K 1< 2< 3< ... <k, rae
k<n. Jlto6oMy 3/1eMeHTy M3 JAHHOTO OTpe3Ka 6y/leT COOTBETCTBOBATH 3JIeMeHT a uenu C». [loaToMy Bcero
MOJIYYUM K TaKUX KOHTPYIHIUU. B Kax0W U3 HUX OCTa/lbHbIM n-k ajsieMeHTaM lenu C, 6yAyT COOTBET-
CTBOBaTb KOHIPY3HLIUM, NOPOXKJAIOLMe HEKaHOHUYeCKUe peTpakuuu pewleTKU CpxxC2; U KaHOHUYECKHe
peTpakuuu n-k asieMeHTHOH Lieny, Bcero f(n-k)+Fzm-r) peTpakuuil. Tenepb, CyMMUpys o BceM k oT 1 Ji0
n-1, nosy4aeMm Tpe6byemMyto Gpopmy.y.
Jlemma 3.4. [15 1106020 HAMYpPAAbHO20 YUCAA 22 cnpagedausa gopmyaa
A)=3f(n-1)~fn-2)+Fagn 1) (18)

Jloka3zaTeabCTBO. B cuiy iemMmmbi 3.3
fn)-f(n-1)=

=(1-[f(n-1)+F2p-0)]+2-[f(n-2)+F2(n-2) |+ ...+ (n-1) - [f(1) +F2])-

-(1:[An-2)+F2(n-2)]+2:[An-3)+F2(n-3)]+..+(n-2) - [f{1) +F2])=
=[fin-D)+Fzpm-n]+ ([f(n-2)+Fon-2)]+ ..+ [f{1)+F2])=

=[fin-1)+Fzm-1]+(An-1)- f(n-2))= 2 fin-1)- An-2)+ Fz(n-1),

f(n]=3f(n—1)—ﬂn—2)+F2(n_1).
IIpumep 3.2. BoruucanM HecKoJIbKO NepBbIx 3HaUYeHUH f(n) u Ret(n, 2). Umeem f{1)=0, f{2)=1. Torza
f(3)=3f(2) -f(1)+F4=3-1 - 0+3=6;
f(4)=3f(3) - f(2)+ Fs=3-6 - 1+8=25;
f(5)=3f(4) - f(3)+ Fs=3-25 - 6+21=90;
f6)=3f(5) - f[4)+ F10=3-90 - 25+55=300;
f(7)=3f(6) - f{5)+ F12=3-300 - 90+144=954,

OTKyZa

MO3TOMY
Ret(2, 2)=f(2)+3F4+2-1/2=1+3-3+1=11;
Ret(3, 2)=f(3)+3Fs+3-2/2=6+3-8+3=33;
Ret(4, 2)=f(4)+3Fs+4-3/2=25+3-21+6=94;
Ret(5, 2)=f(5)+3F10+5-4/2=90+3-55+10=265;
Ret(6, 2)=f(6)+3F12+6-5/2=300+3-144+15=747;
Ret(7, 2)=f(7)+3F14+7-6/2=954+3-377+21=2106.
3ameuanue 3.1. [To popmye (18)
fn)=3f(n-1)-f(n-2)+Fa-1),
npuueM f(1)=0, f{2)=1=F>.
Torpa
f(3)=3f(2) —f(l)+F4=3F2—0+F4=3F2+1F4=F4F2+F2F4;
f(4)=3f(3) —ﬂ2)+ F6=3(3F2+1F4)— F2+ F6=8F2+3F4+1F6= F6F2+ F4F4+ F2F6;
f(5)23f(4) —ﬂ3)+ F8:3(8F2+3F4+1F6)—(3F2+1F4)+F8:21F2+8F4+3F6+1F8:
= FgF7+ FeFu+ FaFe+ FoFg;
f(6):3f(5) —ﬂ4)+ F10:3(2 1F2+8F4+3F6+IFB)—(8F2+3F4+1F6) +F10:
=55F2+2 1F4+8F6+3F8+1F10= F10F2+ F8F4+ F6F6+ F4F8+ F2F10.
IIpeasioxenue 3.2. /15 1106020 HAMYPAAILHO20 YUCAA N22 chpagedausa popmyaa
i+j=n
Jloka3aTeJIbCTBO MpoBeleM UHAYKIMeH 110 n. baza nHAyKIMKU poBepeHa B 3aMevyaHuu 3.1.
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IlycThb 11 HATYPaJbHBIX YKCEJI, MEHbIIKX N, GopMysia BepHa. Torga
fn)=3f{n-1)-f(n-2)+Fz(n-1)=
=3(Fom-2)F2+Fon-3)Fat ...+ FaFo(n-3y+ F2Fo(m-2))-
—(Fo(n-3yF2+ Fo(n-gyFat ...+ Fy Fo(nqyt F2 Fo(n3)) +F2(n-1)=
=(3F2(n-2)— F2(n-3)) F2+(3F2(n-3)- Fa(n-0))Fat ...+ (3Fa— F2) Fon-3)+3F2F2(n-2)+ 1 Fo(n-1)=
=Fym-1yFo+ Fagn2yFat ...+ FeFom3)+ FaFom2)+ FoFon-1).
[IpeasioxkeHue JoKasaHo.
TakuM 06pa3oM, CyMMHUPYH BblllI€CKa3aHHOE, [I0JIyYaeM CAeAYIOLIMM pe3y/ibTaT.
Teopema 3.1. /119 HAMYPAALHO20 YUCAA N UMEem Mecmo HopMyAd

Ret(n, 2)=f(n)+3F2x+n(n-1)/2= Z(in . sz) +3F2,+n(n-1)/2. (20)
i+j=n
Ipumep 3.3. Beruucaum c nomoibto GopmyJibl (20) HeCKOJIBKO MepBbIX 3HaYeHUH Ret(n, 2):
Ret(2,2) = X (Fy; - Fy ;) +3Fu#2:(2-1)/2= FyFa+3Fs+1= 1-1+3-3+1=11;
i+j=2
Ret(3,2) = D (Fy; - F);)+3Fs+3:(3-1)/2= Fy-Fu+ Fu-Fa+3Fe+3=2:1-3+3-8+43=33;
i+j=3
Ret(4, 2) = Z (F,,; - sz) +3Fg+4+(4-1)/2= Fo-Fe+ F4-F4+ Fg-F2+3Fg+6=2-1-8+3-3+3-21+6=94;
i+j=4
Ret(5,2)= Y. (F,; - F, ;) +3F10+5:(5-1)/2= Fa-Fe+ Fy-F+ Fo-Fa + Fo-F2+3F10+10=
i+j=5
=2:1-21+2-3-8+3-55+10=265.
3ameuanue 3.2. B craTbe [6] nosiyyeHa ¢popmysia /i YKCIA BCeX peTPAKTOB MPSIMOTr0 MPOU3Be/ie-
HUsl CnXCy TPU JIIO6BIX HATYPaJIbHBIX YHUCIAX M U N. B 4aCTHOCTH, YHUCJI0 PETPAKTOB pelieTKH C2XC2 paBHO

10, B TO BpeMs KaK YUCJIO ee peTpakiui paBHO 11. OTMETHM, YTO PETPAKT pelleTKU MOXKeT 6bITh 06pa3oM
ee pa3/INYHbIX PETPAKLIUH.
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