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Аннотация. В работе исследуются ретракции прямого произведения двух конечных цепей. Под ретрак-

цией решетки A понимается идемпотентный гомоморфизм A в себя. Найдена и доказана формула для подсче-

та числа всех ретракций прямого произведения двухэлементной цепи на n-элементную цепь.  
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1. Введение. Исходные понятия. Основным результатом работы является формула (20) для 

числа всех ретракций прямого произведения двухэлементной цепи и n-элементной цепи. Также от-

метим новое доказательство теоремы A о числе всех ретракций произвольной конечной цепи, в ко-

тором применяются вспомогательные функции, представляющие самостоятельный интерес.  

Полурешеткой называется идемпотентная коммутативная полугруппа. Если в полурешетке 〈A, +〉 

задать бинарное отношение ≤ формулой: a≤ b⇔a+b=b для любых a, b∈ A, то получим упорядоченное 

множество 〈A, ≤〉, в котором a+b=sup{a, b} для всех a, b∈ A, называемое верхней полурешеткой.  

Решеткой называется алгебраическая структура 〈A, +, ⋅〉, для которой 〈A, +〉 и 〈A, ⋅〉 – полуре-

шетки и операции сложения + и умножения ⋅ связаны законами поглощения x+xy=x и x(x+y)=x. При 

этом соответствующая полурешетке 〈A, +〉 верхняя полурешетка 〈A, ≤〉 удовлетворяет равенству 

a⋅b=inf{a, b} для любых a, b∈ A. Решетка называется решеткой с нулем, если она обладает аддитивно 

нейтральным (равносильно, мультипликативно поглощающим, наименьшим) элементом 0.  

Ретракцией решетки A назовем любой решеточный гомоморфизм e: A→A, такой, что 

e(e(x))=e(x) для всех x∈ X. Вместо e(x) будем писать просто ex. Элемент x∈ A называется неподвиж-

ным элементом ретракции e, если ex=x, в противном случае элемент x будем называть подвижным 

элементом ретракции e. Элементы ex, x∈ A, суть в точности неподвижные элементы ретракции e.  

Цепь – это линейно упорядоченное множество. Ясно, что любая цепь является решеткой.  

Обозначим через Cn n-элементную цепь и рассмотрим прямое произведение Cn×Cm={(a, b) | 

a∈Cn, b∈Cm}. Ясно, что Cn×Cm будет решеткой из nm элементов. 

Целью данной работы является вывод формулы для подсчета всех ретракций решетки Cn×C2.  

Задача нахождения числа ретракций конечных решеток возникла в рамках теории полумоду-

лей над полукольцами. Приведем некоторые исходные понятия этой теории [7, chapter 14].  

Полукольцом называется алгебраическая структура 〈S, +, ⋅〉 с коммутативно-ассоциативной 

операцией сложения + и ассоциативной операцией умножения ⋅, дистрибутивной относительно 

сложения с обеих сторон. Общая теория полуколец изложена в известной книге Голана [7]. Полу-

кольцам с идемпотентным умножением посвящена наша работа [2]. 

Полумодулем над полукольцом S, или просто S-полумодулем, называется коммутативная полу-

группа 〈A, +〉 вместе с отображением S×A → A, (s, a)→sa, обладающим следующими свойствами (для 

любых s, t∈ S и a, b∈ A):  

(1) (s+t)a=sa+ta;  

(2) s(a+b)=sa+sb;  

(3) (st)a=s(ta).  
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Замечание 1.1. Мы не предполагаем наличия нуля 0 и единицы 1 в полукольце S и существо-
вания нуля 0 в коммутативной полугруппе A, но даже если таковые в S и A имеются, то для S-

полумодулей A не предполагается выполнение следующих условий: 1a=a, 0a=0, s0=0 (∀s∈ S, ∀a∈ A).  

Отображение f: A→B S-полумодуля A в S-полумодуль B называется S-гомоморфизмом, если 

f(x+y)=f(x)+f(y) и f(sx)=sf(x) для любых x, y∈ A и s∈ S. Если S-гомоморфизм S-полумодулей является 
взаимно однозначным отображением, то он называется S-изоморфизмом. S-изоморфные полумоду-
ли обладают одними и теми же абстрактными свойствами.  

Пусть e – центральный мультипликативный идемпотент полукольца S, т. е. ee=e и ∀s∈ S es=se. 

На любом S-полумодуле A элемент e действует как идемпотентный S-гомоморфизм e: A→A по пра-

вилу: e(x)=ex для всех x∈ A. Такой S-гомоморфизм e назовем ретракцией S-полумодуля A; его образ 
e(A) будет подполумодулем S-полумодуля A, состоящим в точности из неподвижных элементов 
отображения e. В ряде случаев подполумодуль e(A) однозначно определяет сам S-полумодуль A. В 

частности, это происходит тогда, когда S={e} – одноэлементное полукольцо, 〈A, ≤〉 – конечная полу-

решетка (x+y=sup{x, y})), ∀x∈ A ex≤ x или ∀x∈ A x≤ ex. В работе [3] найдено число таких попарно 
неизоморфных полумодулей A с числом элементов, не превосходящим 5. В случае конечной цепи A 
ее подцепь B совпадает с образом e(A), вообще говоря, различных ретракций e. 

Отношение эквивалентности ρ на решетке A называется конгруэнцией на A, если aρbи cρd вле-

кут (a+c)ρ(b+d) и (ac)ρ(bd) для любых a, b, c, d∈ A (достаточно считать c=d). 

Отметим, что каждая ретракция e решетки A порождает конгруэнцию ρ(e) на решетке A по 
правилу  

xρ(e)y означает ex=ey при любых x, y∈ A. 
 

2. Число ретракций конечной цепи. Напомним, что числами Фибоначчи называются числа:  
F0=0, F1=1, F2=1, F3=2, F4=3, F5=5, F6=8, …, 

образованные по правилу Fn=Fn–1+Fn–2 для всех натуральных чисел n≥ 2. Информацию о числах 
Фибоначчи можно найти, например, в параграфе 6.6 книги [5].  

 
Теорема А [8, p. 228]. Число всех ретракций n-элементной цепи равно числу Фибоначчи F2n с 

номером 2n. 
Теорема А опубликована J. M. Howie в 1971 году. В статье [9, Corollary 4.6] представлено другое 

доказательство этого результата. 
Авторам известны два доказательства данной теоремы, отличные от указанных выше. Первое 

из них опубликовано в работе [1, задача 3.3.1, с. 34–35].  
Приведем второе доказательство. 
Докажем сначала ряд вспомогательных результатов. 
Отождествим n-элементную цепь с отрезком первых n натуральных чисел с естественным по-

рядком:  

 1< 2< 3< … < n–1< n. (1) 

Для натуральных чисел m≤ n положим:  
R(n) – число всех ретракций n-элементной цепи;  
R(n, m) – число ретракций n-элементной цепи с m неподвижными элементами;  

L(n) – число всех ретракций n-элементной цепи с неподвижными элементами 1 и n≥ 2;  

L(n, m) – число ретракций n-элементной цепи с m≥ 2 неподвижными элементами, среди кото-
рых 1 и n.  

Имеем:  

 R(n)= ∑
=

n

m

 mnR
1

),(  и L(n)= ∑
=

n

m

 mnL
2

).,(  (2) 

Легко видеть, что L(n, 2)=n–1 для любого натурального числа n≥ 2. Поэтому число ретракций 

цепи (1) с m неподвижными числами i1< i2< i3< … < im равно  

 (i2–i1)(i3–i2)⋅…⋅ (im–im–1). (3) 

Такие ретракции будем называть ретракциями типа i1< i2< i3< … < im, а число im–i1+1 – их 
длиной.  

Поэтому число R(n) равно сумме произведений (3) по всевозможным выборкам i1< i2< i3< … 

< im из первых n натуральных чисел.  
Далее докажем ряд формул для чисел L(n, m) и R(n, m).  
Следующие равенства очевидны (для соответствующих натуральных n):  

 R(n, 1)=n, R(n, n)=1, L(n, n)=1, R(n, n–1)=2n–2, L(n, n–1)=2n–4. (4) 
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Предложение 2.1. Для любых натуральных чисел n≥ m≥ 3 имеем: 

 L(n, m)= ∑
+−

=

−−−
2

2

).1,1()1(
mn

k

 mk+nLk  (5) 

Доказательство. Возьмем произвольную ретракцию типа 1=i1< i2 <i3< … < im=n. Элемент i2 мо-

жет принимать любые значения k от 2 до n–m+2 включительно. Легко видеть, что число указанных 

ретракций при i2=k равно произведению (k–1)L(n–k+1, m–1). Тем самым получаем формулу (5).  

Предложение 2.2. Для любых натуральных чисел n≥ m≥ 2 имеем:  

 R(n, m)= ∑
=

+−
n

mk

.mkLkn ),()1(  (6) 

Доказательство. Длина k любой ретракции типа i1< i2<i3< … < im n-элементной цепи принима-

ет значения от m до n включительно. Число таких ретракций длины k равно (n–k+1)L(k, m). Поэтому 

имеет место формула (6).  

Предложение 2.3. Для любого натурального числа n≥ 3 верно равенство  

 L(n, 3)=n(n–1)(n–2)/6=
3
nC . (7) 

Доказательство. С учетом формулы (4) по формуле (5) получаем:  

L(n, 3)=1⋅(n–2)+2(n–3)+…+(n–2)⋅1= 

=(n–1–1)+2(n–2–1)+…+(n–2)(n–(n–2)–1)= 

=(n–1)(1+2+…+n–2)–(12+22+…+(n–2)2)= 

=3(n–1)(n–2)(n–1)/6–(n–2)(n–1)(2n–3/6= 

=(n–2)(n–1)(3n–3–2n+3)/6=(n–2)(n–1)n/6=
3
nC .  

Предложение 2.4. Для любых натуральных чисел n≥ m верно равенство  

 R(n, m)=L(n+1, m+1), (8) 

в частности, R(n, 2)=L(n+1, 3)=
3

1+nC . 

Действительно, записав слагаемые правой части формулы (5) для L(n+1, m+1) в обратном по-

рядке, получим правую часть формулы (6), т. е. значение R(n, m).  

Предложение 2.5. Для любого натурального числа n≥ 2 имеем:  

 L(n)=R(n–1). (9) 

В самом деле, в силу формул (2) и (8) получаем:  

L(n)=L(n, 2)+L(n, 3)+…+L(n, n)=R(n–1, 1)+R(n–1,2)+…+R(n–1, n–1)=R(n–1).  

Предложение 2.6. Для любых натуральных чисел n≥ m≥ 2 верно равенство 

 R(n, m)= ∑
=

−−+−
n

mk

.mkRkn )1,1()1(  (10) 

Доказательство вытекает из формул (6) и (8).  

Предложение 2.7. Для любого натурального числа n≥ 3 верно равенство  

 R(n, n–2)=2n2–7n+6. (11) 

Доказательство. По формуле (8) R(n, n–2)=L(n+1, n–1). Поэтому рассмотрим ретракции длины 

n+1 с двумя подвижными элементами, не равными 1 и n+1. Число распределений двух элементов на 

n–1 местах равно числу (n–1)(n–2)/2 сочетаний из n–1 по 2. Если подвижные элементы расположе-

ны рядом, то получаем 3(n–2) ретракций. В противном случае имеем 4((n–1)(n–2)/2–(n–2)) ретрак-

ций. В результате получаем:  

R(n, n–2)=2(n2–3n+2–2n+4)+3n–6=2n2–7n+6.  

Используя формулы (4), (5), (7), (8) и (11), вычислим значения L(n, m) при n≤ 9 и 2≤ m≤ n. Имеем:  

L(2, 2)=1,  

L(3, 2)=2, L(3, 3)=1,  

L(4, 2)=3, L(4, 3)=4, L(4, 4)=1,  

L(5, 2)=4, L(5, 3)=10, L(5, 4)=6, L(5, 5)=1,  

L(6, 2)=5, L(6, 3)=20, L(6, 4)=21, L(6, 5)=8, L(6, 6)=1,  

L(7, 2)=6, L(7, 3)=35, L(7, 4)=56, L(7, 5)=36, L(7, 6)=10, L(7, 7)=1,  

L(8, 2)=7, L(8, 3)=56, L(7, 4)=126, L(8, 5)=36, L(8, 6)=55, L(8, 7)=12, L(8, 8)=1,  

L(9, 2)=8, L(9, 3)=84, L(9, 4)=252, L(9, 5)=330, L(9, 6)=220, L(9, 7)=78,  

L(9, 8)=14 и L(9, 9)=1.  

Имея найденные значения функции L(n, m), по формуле (8) получаем: 
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R(1, 1)=1, 

R(2, 1)=2, R(2, 2)=1,  

R(3, 1)=3, R(3, 2)=4, R(3, 3)=1,  

R(4, 1)=4, R(4, 2)=10, R(4, 3)=6, R(4, 4)=1,  

R(5, 1)=5, R(5, 2)=20, R(5, 3)=21, R(5, 4)=8, R(5, 5)=1,  

R(6, 1)=6, R(6, 2)=35, R(6, 3)=56, R(6, 4)=36, R(6, 5)=10, R(6, 6)=1,  

R(7, 1)=7, R(7, 2)=56, R(7, 3)=126, R(7, 4)=120, R(7, 5)=55, R(7, 6)=12, R(7,7)=1,  

R(8, 1)=8, R(8, 2)=84, R(8, 3)=252, R(8, 4)=330, R(8, 5)=220, R(8, 6)=78, R(8, 7)=14 и R(8, 8)=1.  

Суммируя по m значения R(n, m) в предыдущих строках, получаем по формуле (2):  

R(1)=1, R(2)=3, R(3)=8, R(4)=21, R(5)=55,  

R(6)=144, R(7)=377, R(8)=987.  

Мы видим, что напрашивается следующее рекуррентное соотношение: R(n)=3R(n–1)–R(n–2) 

при всех натуральных n≥ 3.  

Предложение 2.8. Для любого натурального числа n≥ 3 имеем:  

 R(n+1)=R(n)+2R(n–1)+3R(n–2)+…+(n–2)R(3)+(n–1)R(2)+nR(1)+n+1. (12) 

Доказательство. Распишем R(n+1) на основании формул (2) и (10):  

R(n+1, 1)=n+1 

R(n+1, 2)=nR(1, 1)+(n–1)R(2, 1)+(n–2)R(3, 1)+…+3R(n–2, 1)+2R(n–1, 1)+R(n, 1) 

R(n+1, 3)=(n–1)R(2, 2)+(n–2)R(3, 2)+…+3R(n–2, 2)+2R(n–1, 2)+R(n, 2), 

…………..., 

R(n+1, n–1)=3R(n–2, n–2)+2R(n–1, n–2)+R(n, n–2) 

R(n+1, n)=2R(n–1, n–1)+R(n, n–1) 

R(n+1, n+1)=R(n, n). 

Просуммируем последовательно выписанные равенства почленно, начиная со второго равен-

ства и первых с конца слагаемых, а затем прибавим n+1. В результате получим равенство (12).  

Предложение 2.9. Для любого натурального числа n≥ 3 имеем:  

 R(n)=R(n–1)+3R(n–2)+2R(n–2)+2R(n–3)+…+2R(1)+2. (13) 

Доказательство. Для любой ретракции e n-элементной цепи (1) выполняется ровно одно из 

следующих условий:  

1) e(1)=1 и e(n)=n;  

2) e(1)> 1 и e(n)< n;  

3) e(1)=1 и e(n)< n;  

4) e(1)> 1 и e(n)=n.  

Число ретракций e с условием 1) равно R(n–1) по формуле (9). 

Ясно, что число ретракций e с условием 2) равно R(n–2).  

Рассмотрим условие 3). Число k=e(n) принимает значение от 1 до n–1. Число таких ретракций 

e, в силу формулы (9), равно 1+R(1)+R(2)+…+R(n–2).  

Условие 4) симметрично условию 3). Поэтому число ретракций e с условием 4) также равно 

1+R(1)+R(2)+…+R(n–2).  

Суммируя указанные выражения, получаем искомое равенство (13).  

Предложение 2.10. Для любого натурального числа n≥ 3 верно равенство  

 R(n)=3R(n–1)–R(n–2). (14) 

Доказательство проведем индукцией по n. Предположив справедливость равенства (14) для всех 

натуральных чисел k (вместо n), 3≤ k≤ n, докажем его для n+1. Подставив в равенстве (12) 

R(k)=3R(k–1)–R(k–2) для всех k от 3 до n, получаем:  

R(n+1)=3R(n–1)–R(n–2)+2(3R(n–2)–R(n–3))+…+(n–2)(3R(2)–R(1))+ 

(n–1)R(2)+nR(1)+n+1= 

=3[R(n–1)+2R(n–2)+…+(n–2)R(2)+(n–1)R(1)+n]– 

[R(n–2)+2R(n–3)+…+(n–2)R(1)+n–1]=3R(n)–R(n–1),  

поскольку (n–1)R(2)=3(n–1)R(1) и nR(1)+n+1=2n+1=3n–(n–1).  

Предложение доказано.  

Лемма 2.1. Fn+2=3Fn–Fn–2 для любого натурального числа n≥ 3.  

В самом деле,  

Fn+2=Fn+1+Fn=(Fn+Fn–1)+Fn=(Fn+Fn–1+Fn–2)+Fn–Fn–2=3Fn–Fn–2.  

Теперь 

Доказательство теоремы А вытекает из формулы (14), леммы 2.1 и равенств R(1)=1=F2, 

R(2)=3=F4.  
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Следствие 2.1. Последовательность чисел R(1), R(2), …, R(n),… представляет собой последо-

вательность чисел Фибоначчи с четными натуральными номерами.  

Следствие 2.2. На n-элементной цепи – с точностью до изоморфизма – существует ровно F2n 

полумодулей над одноэлементным полукольцом.  

Следствие 2.3. Для любого натурального числа n≥ 3 имеем:  

 R(n)=2R(n–1)+R(n–2)+…+R(1)+1. (15) 

Доказательство. Подставим в равенства (13) и (14) n+1 вместо n. Приравняем правые части 

полученных равенств. Выразив R(n) через остальные слагаемые, получим равенство (15).  

Следствие 2.4. Для любого натурального числа n≥ 3 имеем:  

 F2n=2F2n–2+F2n–4+…+F2+1. (16) 

В силу теоремы А формула (15) превращается в формулу (16).  

Аналогично, формулы (12) и (13) дают соответствующие равенства для чисел Фибоначчи с 

четными номерами.  

Замечание 2.1. Равенства (12)–(15) представляют собой рекуррентные соотношения для 

функции R(n), но только равенство (14) является «свернутой» формулой для R(n) с начальными 

условиями R(1)=1 и R(2)=3.  

 

3. Число ретракций прямого произведения двухэлементной и n-элементной цепей. Рас-

смотрим прямое произведение A×B решеток A и B. Пусть e1 и e2 – ретракции решеток A и B соответ-

ственно. Тогда отображение e1×e2: A×B→A×B, определенное формулой  

(e1×e2)((a, b))=(e1a, e2b) при a∈ A и b∈ B,  

является ретракцией решетки A×B.  

Лемма 3.1 [4, с. 43, теорема 13]. Произвольная конгруэнция ρ на решетке A×B имеет вид 

ρ=ρ1×ρ2, где ρ1 (ρ2) – конгруэнция на решетке A (B) и (a1, b1)(ρ1×ρ2)(a2, b2) означает a1ρ1a2 и b1ρ2b2 для 

любых a1, a2∈ A и b1, b2∈ B. 

Пусть ρ – произвольная конгруэнция на прямом произведении A×B решеток A и B. В контексте 

леммы 3.1 ρ=ρ1×ρ2. Предположим, что конгруэнция ρ1 (ρ2) индуцируется некоторой ретракцией e1 

(e2) решетки A (B): ρ1=ρ(e1) и ρ2=ρ(e2). Ретракция e1×e2 порождает исходную конгруэнцию ρ, то есть 

ρ=ρ(e1×e2). Заметим, что конгруэнция ρ может индуцироваться ретракцией решетки A×B, отличной 

от ретракций вида e1×e2. Ретракции вида e1×e2 будем называть каноническими ретракциями, в про-

тивном случае – неканоническими.  

Легко видеть, что имеет место 

Лемма 3.2. Если A и B – конечные решетки, имеющие соответственно k и l ретракций, то ре-

шетка A×B имеет ровно k⋅l канонических ретракций.  

Предложение 3.1. Пусть A, B – произвольные решетки. Для того чтобы ретракция e решетки 

A×B была канонической, необходимо и достаточно, чтобы выполнялось следующее утверждение: ес-

ли ρ(e)=ρ1×ρ2, a1, a2∈ A, b1, b2∈ B, e((a1, b1))=(a1, b1) и e((a2, b2))=(a2, b2), то a1ρ1a2⇒a1=a2 и 

b1ρ2b2⇒b1=b2.  

Доказательство. Необходимость. Допустим, что e=e1×e2 для ретракции e1 на решетке A и ре-

тракции e2 на решетке B и выполняется условие из указанного в формулировке утверждения. Тогда 

ρ1=ρ(e1), a1=e1(a1), a2=e1(a2), стало быть, a1ρ1a2 ⇔ e1(a1)=e1(a2). Аналогично, b1ρ2b2 ⇒ b1=b2.  

Достаточность. Пусть верно утверждение из формулировки данного предложения. Для лю-

бых a∈ A и b∈ B положим e1(a)=p1(e((a, b))) и e2(b)=p2(e((a, b))), где p1((x, y))=x и p2((x, y))=y для всех 

x∈ A и y∈ B. Покажем, что значение e1(a) не зависит от второй координаты b пары (a, b). Возьмем 

пару (a, c), где c∈ B. Поскольку e((a, b))ρ(a, b) и e((a, c))ρ(a, c), то p1(e((a, b)))ρ1aρ1p1(e((a, c))). Поэто-

му p1(e((a, b)))=p1(e((a, c))). Аналогично доказывается, что значение e2(b) не зависит от первой ко-

ординаты пары (a, b). Легко видеть, что отображения e1 и e2 служат ретракциями решеток A и B со-

ответственно. Равенство e=e1×e2 очевидно.  

Пример 3.1. Найдем все ретракции решетки C2×C2={(0, 0), (0, 1), (1, 0), (1, 1)}, где C2={0, 1} при 

0< 1. Цепь C2 имеет три ретракции: константные A→{0}, A→{1} и тождественную, и две конгруэнции: 

отношение равенства и одноклассовую. Поэтому решетка C2×C2 обладает девятью каноническими 

ретракциями и четырьмя конгруэнциями. Одноклассовая конгруэнция на решетке C2×C2 порождается 

четырьмя ретракциями, отношение равенства – только тождественной ретракцией, каждая из двух 

двухклассовых конгруэнций – 2 каноническими ретракциями. Возьмем на решетке C2×C2 конгруэн-

цию ρ с двумя классами {0, 1}×{0} и {0, 1}×{1}. И рассмотрим отображение e: C2×C2→C2×C2, переводящее 

класс C2×{0} в элемент (0, 0), а класс C2×{1} – в элемент (1, 1). По предложению 3.1 e будет неканониче-

ской ретракцией решетки C2×C2, порождающей конгруэнцию ρ. Аналогично, двойственная к e нека-
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ноническая ретракция порождает конгруэнцию с двумя классами {0}×C2 и {1}×C2. Таким образом, ре-

шетка C2×C2 имеет 11 ретракций, включая две неканонические ретракции.  

Обозначим Ret(n, m) – число всех ретракций прямого произведения n-элементной цепи Cn и m-

элементной цепи Cm и найдем рекуррентную формулу для Ret(n, 2) числа всех ретракций решетки 

C=Cn×C2. 

По лемме 3.2 число всех канонических ретракций на C равно F2n·F4=3F2n. 

Число неканонических ретракций на C в случае, если конгруэнция цепи Cn одноклассовая, равно 

(n–1)+(n–2)+…+2+1=n(n–1)/2. 

Далее обозначим f(n) – число неканонических ретракций на C в случае, если конгруэнция цепи 

Cn неодноклассовая. 

Лемма 3.3. Для любого натурального числа n≥2 справедлива формула 

 f(n)=1·[f(n–1)+F2(n–1)]+2·[f(n–2)+F2(n–2)]+…+(n–1)·[f(1)+F2]. (17) 

Доказательство. Обозначим цепь Cn как 1< 2< 3< … < k < … < n–1< n, а цепь C2, соответственно, 

a<b. Найдем все конгруэнции на C, порождающие неканонические ретракции, в случае, когда кон-

груэнция цепи Cn неодноклассовая. Ясно, что при этом конгруэнция на C2 должна быть одноклассо-

вой. Рассмотрим конгруэнции на Cn, одним из классов которых является отрезок 1< 2< 3< … < k, где 

k<n. Любому элементу из данного отрезка будет соответствовать элемент a цепи C2. Поэтому всего 

получим k таких конгруэнций. В каждой из них остальным n–k элементам цепи Cn будут соответ-

ствовать конгруэнции, порождающие неканонические ретракции решетки Cn–k×C2 и канонические 

ретракции n–k элементной цепи, всего f(n–k)+F2(n–k) ретракций. Теперь, суммируя по всем k от 1 до 

n–1, получаем требуемую формулу. 

Лемма 3.4. Для любого натурального числа n≥2 справедлива формула 

 f(n)=3f(n–1)–f(n–2)+F2(n–1). (18) 

Доказательство. В силу леммы 3.3  

f(n)–f(n–1)= 

=(1·[f(n–1)+F2(n–1)]+2·[f(n–2)+F2(n–2)]+…+(n–1)·[f(1)+F2])– 

–(1·[f(n–2)+F2(n–2)]+2·[f(n–3)+F2(n–3)]+…+(n–2)·[f(1)+F2])= 

=[f(n–1)+F2(n–1)]+ ([f(n–2)+F2(n–2)]+…+[f(1)+F2])= 

=[f(n–1)+F2(n–1)]+( f(n–1)– f(n–2))= 2 f(n–1)– f(n–2)+ F2(n–1), 

откуда 

f(n)=3f(n–1)–f(n–2)+F2(n–1). 

Пример 3.2. Вычислим несколько первых значений f(n) и Ret(n, 2). Имеем f(1)=0, f(2)=1. Тогда  

f(3)=3f(2) –f(1)+F4=3·1 – 0+3=6; 

f(4)=3f(3) – f(2)+ F6=3·6 – 1+8=25; 

f(5)=3f(4) – f(3)+ F8=3·25 – 6+21=90; 

f(6)=3f(5) – f(4)+ F10=3·90 – 25+55=300; 

f(7)=3f(6) – f(5)+ F12=3·300 – 90+144=954, 

поэтому 

Ret(2, 2)=f(2)+3F4+2·1/2=1+3·3+1=11; 

Ret(3, 2)=f(3)+3F6+3·2/2=6+3·8+3=33; 

Ret(4, 2)=f(4)+3F8+4·3/2=25+3·21+6=94; 

Ret(5, 2)=f(5)+3F10+5·4/2=90+3·55+10=265; 

Ret(6, 2)=f(6)+3F12+6·5/2=300+3·144+15=747; 

Ret(7, 2)=f(7)+3F14+7·6/2=954+3·377+21=2106. 

Замечание 3.1. По формуле (18)  

f(n)=3f(n–1)–f(n–2)+F2(n–1), 

причем f(1)=0, f(2)=1=F2. 

Тогда  

f(3)=3f(2) –f(1)+F4=3F2–0+F4=3F2+1F4=F4F2+F2F4; 

f(4)=3f(3) – f(2)+ F6=3(3F2+1F4)– F2+ F6=8F2+3F4+1F6= F6F2+ F4F4+ F2F6; 

f(5)=3f(4) – f(3)+ F8=3(8F2+3F4+1F6)–(3F2+1F4)+F8=21F2+8F4+3F6+1F8= 

= F8F2+ F6F4+ F4F6+ F2F8; 

f(6)=3f(5) – f(4)+ F10=3(21F2+8F4+3F6+1F8)–(8F2+3F4+1F6) +F10= 

=55F2+21F4+8F6+3F8+1F10= F10F2+ F8F4+ F6F6+ F4F8+ F2F10. 

Предложение 3.2. Для любого натурального числа n≥2 справедлива формула 

 f(n) = )( 22 j
nji

i FF ⋅∑
=+

. (19) 

Доказательство проведем индукцией по n. База индукции проверена в замечании 3.1.  
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Пусть для натуральных чисел, меньших n, формула верна. Тогда  
f(n)= 3f(n–1)–f(n–2)+F2(n–1)= 

=3(F2(n-2)F2+F2(n-3)F4+…+F4F2(n–3)+ F2F2(n-2))– 
–(F2(n-3)F2+ F2(n-4)F4+…+ F4 F2(n-4)+ F2 F2(n-3)) +F2(n–1)= 

=(3F2(n-2)– F2(n-3))F2+(3F2(n-3)– F2(n-4))F4+…+(3F4– F2)F2(n-3)+3F2F2(n-2)+1F2(n–1)= 
=F2(n-1)F2+ F2(n-2)F4+…+ F6F2(n-3)+ F4F2(n-2)+ F2F2(n–1). 

Предложение доказано. 
Таким образом, суммируя вышесказанное, получаем следующий результат.  
Теорема 3.1. Для натурального числа n имеет место формула 

 Ret(n, 2)=f(n)+3F2n+n(n–1)/2= )( 22 j
nji

i FF ⋅∑
=+

+3F2n+n(n–1)/2. (20) 

Пример 3.3. Вычислим с помощью формулы (20) несколько первых значений Ret(n, 2): 

Ret(2, 2) = )( 2
2

2 j
ji

i FF ⋅∑
=+

+3F4+2·(2–1)/2= F2·F2+3F4+1= 1·1+3·3+1=11; 

Ret(3, 2) = )( 2
3

2 j
ji

i FF ⋅∑
=+

+3F6+3·(3–1)/2= F2·F4+ F4·F2+3F6+3= 2·1·3+3·8+3=33; 

Ret(4, 2) = )( 2
4

2 j
ji

i FF ⋅∑
=+

+3F8+4·(4–1)/2= F2·F6+ F4·F4+ F6·F2+3F8+6=2·1·8+3·3+3·21+6=94; 

Ret(5, 2) = )( 2
5

2 j
ji

i FF ⋅∑
=+

+3F10+5·(5–1)/2= F2·F8+ F4·F6+ F6·F4 + F8·F2+3F10+10= 

=2·1·21+2·3·8+3·55+10=265. 
Замечание 3.2. В статье [6] получена формула для числа всех ретрактов прямого произведе-

ния Cm×Cn при любых натуральных числах m и n. В частности, число ретрактов решетки C2×C2 равно 
10, в то время как число ее ретракций равно 11. Отметим, что ретракт решетки может быть образом 
ее различных ретракций. 
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