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Аннотация. Актуальность исследования определяется широкой востребованностью молекулярной ди-

намики для моделирования процессов на атомном уровне, где выбор численного метода интегрирования суще-
ственно влияет на точность и устойчивость результатов. Цель исследования – сравнительный анализ различных 
численных методов интегрирования в молекулярной динамике, реализованных на языке C++ с единым интер-
фейсом. Разработана программная платформа для генерации начальных условий, интегрирования системы 
одинаковыми методами и оценки точности по среднеквадратичной ошибке. Работа включает теоретический 
анализ алгоритмов и их численную верификацию на модельной задаче с потенциалом Леннарда-Джонса. Для 
исследования были рассмотрены метод Рунге – Кутты 4-го порядка [2], классический алгоритм Верле [3], ско-
ростной Верле [3], метод с перескоками (leapfrog) [4], метод Бимана – Шофилда [5] и предиктор-корректор [6]. 
Основные результаты демонстрируют, что модификации Верле и метод Бимана – Шофилда обеспечивают 
наименьшую среднеквадратичную ошибку (MSE [7]) и высокую численную устойчивость при различных пара-
метрах моделирования, в то время как стандартный алгоритм Верле наиболее чувствителен к накоплению по-
грешностей. Полученные данные могут быть использованы для оптимизации вычислительных экспериментов в 
задачах физики твердого тела, химии, материаловедения и биомолекулярных исследований. 

 
Ключевые слова: молекулярная динамика, численные методы интегрирования, устойчивость алго-

ритмов, среднеквадратичная ошибка, симуляция атомных систем, вычислительный эксперимент. 
 

Введение. Молекулярная динамика [1] – важный метод численного моделирования, позво-
ляющий отслеживать эволюцию атомных и молекулярных систем через интегрирование классиче-
ских уравнений движения. Эффективность и стабильность моделирования во многом зависят от 
выбранного численного алгоритма. Целью настоящей работы является сравнительный анализ чис-
ленных методов интегрирования в молекулярной динамике, их реализация в единой программной 
платформе и оценка точности и устойчивости при различных параметрах моделирования. Основ-
ные задачи исследования состоят в следующем: 

– Разработка единой программы на C++ для реализации и сравнения алгоритмов интегриро-

вания. 

– Численная верификация корректности работы методов. 

– Оценка точности (через среднеквадратичную ошибку, MSE) и устойчивости при различных 

шагах интегрирования. 

Математическая модель. Рассматривается замкнутая система, состоящая из однотипных 

молекул, расположенных в кубе заданного объема V = L�. Гамильтониан системы имеет вид [1]: 

H = � m
2 ||v�||�




���
+ � u(|r� − r�|)




���
, 

 
 

(1) 
где: 

– m – масса молекулы; 

–  r� – радиус-вектор i-й молекулы; 
– v� – скорость i-й молекулы; 

–  u(r) – потенциал межмолекулярного взаимодействия; 
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–  �r� − r�� – расстояние между i-й и j-й молекулами. 

Для описания взаимодействия используется потенциал Леннарда-Джонса [1]: 

u(r) = 4ε � σ
r"�� − 	 σr"

#
$,  

         (2) 
где: 

–  ε – глубина потенциальной ямы; 

–  σ – расстояние, на котором потенциал равен нулю; 

–  r – расстояние между центрами двух молекул. 
Сила, действующая между двумя молекулами, определяется как градиент потенциала: 

F&r��' = 	−∇�u&r��' = 	24ε �2 )*+
,-.*/ −

)0
,-.1$

,-2,.
,-. ,    

  (3) 
где – расстояние между центрами двух молекул. 

На основе гамильтониана выводятся классические уравнения движения для молекул: dr�
dt = v� 

m 56-
57 = ∑ F(�r� − r��)
����9�

. 

 
 

                      
(4) 

Обезразмеривание упрощает уравнения, позволяя работать с универсальными безразмерны-
ми параметрами:  

–  ε – глубина потенциальной ямы; 

–  σ – расстояние, на котором потенциал равен нулю; 

–  m – масса молекулы. 

Введем безразмерные переменные на основе характерных масштабов системы: 

–  r∗ = ,
)  – безразмерное расстояние; 

–  t∗ = 7
;<=+

>
  – безразмерное время; 

–  v∗ = 6;<=+
>

)   – безразмерная скорость; 

–  F∗ = ?)
@   – безразмерные силы. 

После замены исходные уравнения движения приводятся к виду: 
5,-∗
57∗ = v�	∗, 
56-∗
57∗ = a�	∗ , 

            
 

           (5) 

где a�	∗ =	F�	∗. 
Начальные и граничные условия. Начальные координаты молекул равномерно распреде-

ляются внутри куба со стороной L, определяемой числом частиц и заданной плотностью. Началь-
ные скорости формируются по нормальному распределению с нулевым средним и дисперсией v, 
при этом осуществляется корректировка для обнуления суммарного импульса системы. 

Для снижения граничных эффектов применяются отражающие граничные условия, при вы-
ходе молекулы за границы куба ее координата отражается, а соответствующая компонента скоро-
сти меняет знак. 

Численные методы интегрирования. 
– Метод Рунге – Кутты 4-го порядка – высокоточный метод с локальной ошибкой O(ΔtE). Но-

вое значение функции считается так: 

yGH� = yG + dt
6 (k� + 2k� + 2k� + kK), (6) 

где: 
k� = f(tG; yG) 

k� = f(tG + dt
2 ; yG + dt

2 k�) 

k� = f NtG + dt
2 ; yG + dt

2 k�O 

kK = f(tG + dt; yG + dt ∙ k�) 

 
 
 
 
 

(7) 
– Метод Верле – метод, сохраняющий энергию на длительных временах. 

xGH� = 2xG − xG2� + aGdt�  
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vG = xGH� − xG2�
2dt  (8) 

Предполагает хранение координат с предыдущего шага. 
– Скоростной метод Верле – модификация метода Верле с явным учетом скоростей. 

xGH� = xG + vGdt + 1
2 aGdt� 

vGH� = vG + 1
2 (aG + aGH�)dt 

 
 
 

(9) 
– Метод с перескоками (leapfrog) разделяет обновление координат и скоростей на полушагах. 

vGH��
= vG + 1

2 aGdt 
xGH� = xG + vGH��

dt 
vGH� = vGH��

+ 1
2 aGH�dt 

 
 
 
 
 

(10) 
– Метод Бимана – Шофилда использует информацию о силах на предыдущем шаге для повы-

шения точности. 

xGH� = xG + vGdt + dt�
6 (4aG − aG2�) 

vGH� = vG + dt
6 (2aGH� + 5aG − aG2�) 

 
 
 

(11) 
Предусматривает использование ускорений, вычисленных на предыдущем шаге моделирования. 
– Предиктор-корректор – предсказывает состояние системы и корректирует его на основе 

новых вычислений сил. 

xGH�
T = xG + vGdt + 1

2 aGdt� 

vGH�
T = vG + aGdt 

xGH� = xG + vGdt + 1
2 aGH�

T dt� 

vGH� = vG + 1
2 &aG + aGH�

T 'dt 

 
 
 

 
 

(12) 

 
Для методов Верле и с перескоками (leapfrog) критически важно отслеживать сохранение 

полной энергии системы на протяжении всего моделирования. Это позволяет оценить коррект-
ность численного интегрирования и устойчивость симуляции. Тем не менее в рамках данной рабо-
ты контроль энергии не осуществлялся. 

Для сравнения методов вычисляется среднеквадратичная ошибка (MSE) позиций молекул 
относительно эталонного метода (выбираемого пользователем). Накопленная MSE усредняется по 
всем шагам моделирования для оценки долговременной стабильности методов. 

Для объективной оценки точности и производительности методов интегрирования уравне-
ний движения в молекулярной динамике была разработана специализированная программа на C++. 
Программа реализует следующие ключевые функции: 

– генерация начальных условий (с заданной плотностью); 
– генерация начальных скоростей по нормальному распределению с последующей коррекци-

ей для обнуления общего импульса системы; 
– интеграция траекторий шестью различными методами; 
– вычисление среднеквадратичной ошибки (MSE) позиций молекул относительно эталонного 

решения; 
– возможность рассматривать модель пошагово. 
Разработанная программа реализует уникальную схему сравнения, при которой все методы 

интегрирования выполняются параллельно на идентичных начальных условиях с синхронизацией 
на каждом шаге моделирования. Все методы интегрирования запускаются с одинаковыми началь-
ными условиями, что обеспечивает корректность сравнения. Пользователь может выбрать любой 
из реализованных методов в качестве эталонного для расчета MSE. По умолчанию установлен ме-
тод Рунге – Кутты 4-го порядка как теоретически наиболее точный. Внешний вид программы пред-
ставлен на рисунке 1. 
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Рис 1. Внешний вид программы 

 
Была выполнена серия экспериментов с использованием различных эталонных методов. Ре-

зультаты моделирования после 10 000 шагов при различных начальных условиях представлены в 
табл. 1–10. Табл. 1–3 содержат сравнение в зависимости от числа молекул, табл. 4–6 – от значения 
параметра ε, табл. 7–8 – от значения σ, а табл. 9–10 – от массы молекул m. 

 

Таблица 1  

10 молекул, UV2W, дисперсия начальных скоростей молекул 6 усл. ед.,  
плотность 5 молекул/усл. ед3., ε	�	σ	�	1ε	�	σ	�	1ε	�	σ	�	1ε	�	σ	�	1, масса каждой молекулы 0,1 усл. ед.   

Эталонный 
метод 

Рунге –
Кутты 4 

Верле 
Скоростной 

Верле 
С перескока-

ми 
Бимана – 
Шофилда 

Предиктор-
корректор 

Среднее MSE 

Рунге – Кутты 4 – 3.3100360638 2.2898682149 2.1232286169 2.2869681771 2.3140359918 2.4648274129 

Верле 3.3100360638 – 3.0844523786 3.3020672680 3.4195531569 2.9295180608 3.2091253856 

Скоростной 
Верле 

2.2898682149 3.0844523786 – 1.5810178947 2.0636582703 2.3913571445 2.2820707806 

С перескоками 2.1232286169 3.3020672680 1.5810178947 – 1.8999596196 2.3642910427 2.2541128884 

Бимана – 
Шофилда 

2.2869681771 3.4195531569 2.0636582703 1.8999596196 – 2.2234322803 2.3787143008 

Предиктор-
корректор 

2.3140359918 2.9295180608 2.3913571445 2.3642910427 2.2234322803 – 2.4445269040 

 
Для следующего эксперимента количество молекул увеличено до 30. Начальные координаты 

и скорости сгенерированы заново при сохранении остальных параметров моделирования. 
 

Таблица 2 

30 молекул, UV2W, дисперсия начальных скоростей молекул 6 усл. ед.,  
5 молекул/усл. ед3., ε	�	σ	�	1ε	�	σ	�	1ε	�	σ	�	1ε	�	σ	�	1, масса каждой молекулы 0,1 усл. ед.   

Эталонный 
метод 

Рунге – Кут-
ты 4 

Верле 
Скоростной 

Верле 
С переско-

ками 
Бимана – 
Шофилда 

Предиктор–
корректор 

Среднее MSE 

Рунге – Кутты 4 – 5.5670535546 4.4656635893 4.5755111600 4.6260248227 4.6189603152 4.7706426884 

Верле 5.5670535546 – 5.2017358280 5.3256159362 5.4409951064 5.5711764325 5.4213153715 

Скоростной 
Верле 

4.4656635893 5.2017358280 – 3.4284989854 3.7861826213 4.4701769800 4.2704516008 

С перескоками 4.5755111600 5.3256159362 3.4284989854 – 3.7957480494 4.6320376606 4.3514823583 

Бимана – 
Шофилда 

4.6260248227 5.4409951064 3.7861826213 3.7957480494 – 4.5982169319 4.4494335063 

Предиктор–
корректор 

4.6189603152 5.5711764325 4.4701769800 4.6320376606 4.5982169319 – 4.7781136640 
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Для следующего эксперимента количество молекул увеличено до 50. Начальные условия пере-
созданы при тех же параметрах плотности, массы и дисперсии скоростей. 

 

Таблица 3  

50 молекул, UV2W, дисперсия начальных скоростей молекул 6 усл. ед.,  
плотность 5 молекул/усл. ед3., ε	�	σ	�	1ε	�	σ	�	1ε	�	σ	�	1ε	�	σ	�	1, масса каждой молекулы 0,1 усл. ед.   

Эталонный 
метод 

Рунге – Кут-
ты 4 

Верле 
Скоростной 

Верле 
С переско-

ками 
Бимана – 
Шофилда 

Предиктор–
корректор 

Среднее MSE 

Рунге – Кутты 
4 

– 6.1084328822 3.6532622098 3.7112421236 3.6787085636 4.1723742859 4.2648040130 

Верле 6.1084328822 – 5.3969655978 5.3433050948 5.2802530556 6.2756380319 5.6809189325 

Скоростной 
Верле 

3.6532622098 5.3969655978 – 2.4553632812 1.8414772796 4.2612499987 3.5216636734 

С перескока-
ми 

3.7112421236 5.3433050948 2.4553632812 – 2.3943194711 4.1448541042 3.6098168150 

Бимана – 
Шофилда 

3.6787085636 5.2802530556 1.8414772796 2.3943194711 – 4.3427835882 3.5075083916 

Предиктор–
корректор 

4.1723742859 6.2756380319 4.2612499987 4.1448541042 4.3427835882 – 4.6393800018 

 
Увеличение числа молекул сопровождается ростом среднеквадратичной ошибки, что обу-

словлено как усилением численных флуктуаций, так и спецификой генерации начальных скоро-
стей. На следующем этапе исследования будет рассмотрено влияние иных параметров системы. В 
качестве отправной точки проанализируем случай при ε = 1. Начальные координаты и скорости 
молекул будут сгенерированы заново. 

 

Таблица 4  

30 молекул, UV2W, дисперсия начальных скоростей молекул 6 усл. ед.,  
плотность5 молекул/усл. ед3., ε	�	σ	�	1ε	�	σ	�	1ε	�	σ	�	1ε	�	σ	�	1, масса каждой молекулы 0,1 усл. ед.   

Эталонный  
метод 

Рунге – Кут-
ты 4 

Верле 
Скоростной 

Верле 
С переско-

ками 
Бимана – 
Шофилда 

Предиктор–
корректор 

Среднее MSE 

Рунге – Кутты 4 – 3.1990532090 3.5759952499 3.6211857614 3.7850295816 4.0540716264 3.6470670857 

Верле 3.1990532090 – 3.2037773575 3.3550943961 3.3832351822 3.9686682791 3.4219656848 

Скоростной 
Верле 

3.5759952499 3.2037773575 – 1.0035557254 1.5586050111 3.4874009495 2.5658668587 

С перескоками 3.6211857614 3.3550943961 1.0035557254 – 1.5896298901 3.7825449350 2.6704021416 

Бимана – 
Шофилда 

3.7850295816 3.3832351822 1.5586050111 1.5896298901 – 3.4180593449 2.7469118020 

Предиктор–
корректор 

4.0540716264 3.9686682791 3.4874009495 3.7825449350 3.4180593449 – 3.7421490270 

 
Несмотря на сохранение всех параметров системы, замена начальных координат и скоростей 

привела к заметным отличиям в значениях MSE (табл. 2 и 4). 
Для следующего эксперимента увеличен с 1 до 10, при этом все остальные параметры систе-

мы сохранены такими же, как в условиях табл. 4. 
 

Таблица 5  

30 молекул, UV2W, дисперсия начальных скоростей молекул 6 усл. ед.,  
плотность 5 молекул/усл. ед3., ε	�	10,	σ	�	1ε	�	10,	σ	�	1ε	�	10,	σ	�	1ε	�	10,	σ	�	1, масса каждой молекулы 0,1 усл. ед.   

Эталонный  
метод 

Рунге – Кут-
ты 4 

Верле 
Скоростной 

Верле 
С переско-

ками 
Бимана – 
Шофилда 

Предиктор–
корректор 

Среднее MSE 

Рунге – Кутты 4 – 8.5058983354 5.8754341843 5.8194044050 6.0791595325 5.6840717857 6.3927936486 

Верле 8.5058983354 – 8.1433108772 8.3214806736 8.3285875381 8.2290232755 8.3056601400 

Скоростной 
Верле 

5.8754341843 8.1433108772 – 5.2302866456 4.9555142900 5.9707435615 6.0350579117 

С перескоками 5.8194044050 8.3214806736 5.2302866456 – 5.2033640739 6.0373216102 6.1223714817 

Бимана – 
Шофилда 

6.0791595325 8.3285875381 4.9555142900 5.2033640739 – 6.0626609824 6.1258572834 

Предиктор–
корректор 

5.6840717857 8.2290232755 5.9707435615 6.0373216102 6.0626609824 – 6.3967642431 
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В следующем эксперименте параметр увеличен с 10 до 25 при сохранении остальных пара-
метров системы. 

 

Таблица 6  

30 молекул, UV2W, дисперсия начальных скоростей молекул 6 усл. ед.,  
плотность 5 молекул/усл. ед3., ε	�	25,	σ	�	1ε	�	25,	σ	�	1ε	�	25,	σ	�	1ε	�	25,	σ	�	1, масса каждой молекулы 0,1 усл. ед.   

Эталонный 
метод 

Рунге – Кут-
ты 4 

Верле 
Скоростной 

Верле 
С переско-

ками 
Бимана – 
Шофилда 

Предиктор–
корректор 

Среднее MSE 

Рунге – Кутты 4 – 6.9066114255 6.0278915804 5.8972311989 5.9998667658 5.9527658393 6.1568733620 

Верле 6.9066114255 – 6.9315803382 6.6211195207 6.7891036494 6.3351772189 6.7167184305 

Скоростной 
Верле 

6.0278915804 6.9315803382 – 5.6890279118 5.7247896620 5.8991396284 6.0544858242 

С перескоками 5.8972311989 6.6211195207 5.6890279118 – 5.7476889905 6.0675351940 6.0045205632 

Бимана – 
Шофилда 

5.9998667658 6.7891036494 5.7247896620 5.7476889905 – 6.0445100948 6.0611918325 

Предиктор–
корректор 

5.9527658393 6.3351772189 5.8991396284 6.0675351940 6.0445100948 – 6.0598255951 

 

Далее исследуется влияние параметра σ. Для этого сгенерированы новые начальные условия. 
 

Таблица 7 

30 молекул, UV2W, дисперсия начальных скоростей молекул 6 усл. ед.,  
плотность 5 молекул/усл. ед3., ε	�	1,	σ	�	2ε	�	1,	σ	�	2ε	�	1,	σ	�	2ε	�	1,	σ	�	2, масса каждой молекулы 0,1 усл. ед.   

Эталонный ме-
тод 

Рунге – Кут-
ты 4 

Верле 
Скоростной 

Верле 
C переско-

ками 
Бимана – 
Шофилда 

Предиктор–
корректор 

Среднее MSE 

Рунге – Кутты 4 – – 6.7671639325 6.6686417397 – 6.8114397659 6.7490818127 

Верле – – – – – – – 

Скоростной  
Верле 

6.7671639325 – – 6.4335179508 – 6.9103614528 6.7036811120 

C перескоками 6.6686417397 – 6.4335179508 – – 6.5517369846 6.5512988917 

Бимана – 
Шофилда 

– – – – – – – 

Предиктор–
корректор 

6.8114397659 – 6.9103614528 6.5517369846 – – 6.7578460678 

 
Для методов Верле и Бимана – Шофилда наблюдалась потеря численной устойчивости, со-

провождаемая выходом молекул за границы расчетной области и возникновением неопределенных 
значений координат (NaN), что свидетельствует о расходимости интегрирования. Для следующего 
эксперимента значение параметра σ увеличено с 2 до 3 при сохранении всех остальных параметров 
системы неизменными. 

 

Таблица 8  

30 молекул, UV2W, дисперсия начальных скоростей молекул 6 усл. ед.,  
плотность 5 молекул/усл. ед3., ε	�	1,	σ	�	3ε	�	1,	σ	�	3ε	�	1,	σ	�	3ε	�	1,	σ	�	3, масса каждой молекулы 0,1 усл. ед.   

Эталонный ме-
тод 

Рунге – Кут-
ты 4 

Верле 
Скоростной 

Верле 
C переско-

ками 
Бимана – 
Шофилда 

Предиктор–
корректор 

Среднее MSE 

Рунге – Кутты 4 – – – 6.5101566040 – 6.8672520398 6.6887043219 

Верле – – – – – – – 

Скоростной  
Верле 

– – – – – – – 

C перескоками 6.5101566040 – – – – 6.8672520398 6.6887043219 

Бимана – 
Шофилда 

– – – – – – – 

Предиктор–
корректор 

6.8672520398 – – 6.9088849049 – – 6.8880684724 

 
Для методов Верле, скоростного Верле и Бимана – Шофилда наблюдалась потеря численной 

устойчивости, сопровождаемая выходом молекул за границы расчетной области и возникновением 
неопределенных значений координат (NaN), что свидетельствует о расходимости интегрирования. 
На следующем этапе проанализировано влияние массы молекул. Исходные условия были пересо-
зданы для случая Z � 1. 

Таблица 9  



 

Математический вестник Вятского государственного университета, 2025, № 2 (33) 
 

18 

30 молекул, UV2W, дисперсия начальных скоростей молекул 6 усл. ед.,  
плотность 5 молекул/усл. ед3., ε	�	σ	�	1ε	�	σ	�	1ε	�	σ	�	1ε	�	σ	�	1, масса каждой молекулы 1 усл. ед. 

Эталонный ме-
тод 

Рунге – Кут-
ты 4 

Верле 
Скоростной 

Верле 
С переско-

ками 
Бимана – 
Шофилда 

Предиктор–
корректор 

Среднее MSE 

Рунге – Кутты 4 – 6.6578740175 5.9967089301 5.9386020104 6.2436035527 5.5872538426 6.0848084707 

Верле 6.6578740175 – 6.6669356028 6.6313928156 6.8513325130 6.7994525972 6.7213975092 

Скоростной 
Верле 

5.9967089301 6.6669356028 – 5.1158552613 5.2984983381 5.6601091850 5.7476214635 

С перескоками 5.9386020104 6.6313928156 5.1158552613 – 5.1198747228 5.8947621433 5.7400973907 

Бимана – 
Шофилда 

6.2436035527 6.8513325130 5.2984983381 5.1198747228 – 5.9829873926 5.8992593038 

Предиктор–
корректор 

5.5872538426 6.7994525972 5.6601091850 5.8947621433 5.9829873926 – 5.9849130321 

 

Для следующего эксперимента масса молекул увеличена с до Z � 15, начальные координа-
ты и скорости пересозданы. 

 

Таблица 10 

30 молекул, UV2W, дисперсия начальных скоростей молекул 6 усл. ед.,  
плотность 5 молекул/усл. ед3., ε	�	σ	�	1ε	�	σ	�	1ε	�	σ	�	1ε	�	σ	�	1, масса каждой молекулы U[	усл. ед.  

Эталонный 
метод 

Рунге – Кут-
ты 4 

Верле 
Скоростной 

Верле 
С переско-

ками 
Бимана – 
Шофилда 

Предиктор–
корректор 

Среднее MSE 

Рунге – Кутты 4 – 2.8030149445 1.4089900628 1.4478930799 1.4102251782 1.9765881149 1.8093422761 

Верле 2.8030149445 – 2.4761600045 2.6232408147 2.4936722658 2.8081993666 2.6408574792 

Скоростной 
Верле 

1.4089900628 2.4761600045 – 0.1471507998 0.0177859875 1.6880526030 1.1476278915 

С перескоками 1.4478930799 2.6232408147 0.1471507998 – 0.1629010689 1.7279904666 1.2218352460 

Бимана – 
Шофилда 

1.4102251782 2.4936722658 0.0177859875 0.1629010689 – 1.6696181637 1.1508405328 

Предиктор–
корректор 

1.9765881149 2.8081993666 1.6880526030 1.7279904666 1.6696181637 – 1.9740897430 

 
Результаты и обсуждение. Проведен ряд вычислительных экспериментов для оценки влия-

ния параметров системы на точность алгоритмов. Рассмотрены системы из N = 10, 30 и 50 молекул 
при различных значениях плотности и параметров потенциала Леннарда-Джонса (ε, σ), а также 
разные массы молекул. 

С увеличением числа молекул наблюдается рост накопленной ошибки интегрирования у всех 
методов из-за усиления численных погрешностей. При N = 10 все интеграторы демонстрируют от-
носительно низкую MSE, однако уже при N = 30 наблюдается ее существенный рост. Методы с пере-
скоками (leapfrog), скоростной Верле и Бимана – Шофилда показывают наименьшую MSE при лю-
бом N, тогда как стандартный метод Верле дает значительно большие ошибки. Это свидетельствует 
о лучшей стабильности модифицированных алгоритмов по сравнению с классическим методом 
Верле. Метод Рунге – Кутты 4-го порядка остается численно устойчивым во всех экспериментах, но 
его относительное преимущество по точности уменьшается при росте N. 

При увеличении глубины потенциальной ямы ε среднеквадратичная ошибка также возрастает 
для всех методов. Особенно заметен рост MSE у алгоритмов Верле и предиктор-корректора, тогда как 
методы с перескоками (leapfrog) и скоростной Верле сохраняют относительно низкие ошибки даже 
при больших ε. Метод Рунге – Кутты 4-го порядка остается стабильным при увеличении ε, однако 
начинает уступать модифицированным методам по точности на сильных взаимодействиях. 

При увеличении характерного расстояния σ система становится численно более жесткой, что 
приводит к неустойчивости некоторых методов. Так, стандартные схемы Верле, скоростной метод 
Верле и метод Бимана – Шофилда при больших σ приводят к расходимости расчета (возникают 
NaN-значения), тогда как методы с перескоками (leapfrog) и предиктор-корректор остаются рабо-
тоспособными. Это говорит о более высокой устойчивости этих алгоритмов при экстремальных 
значениях параметров потенциала. 

Увеличение массы частиц от 1 до 15 приводит к уменьшению MSE у всех методов за счет за-
медления динамики системы. Особенно ярко это проявляется для скоростного метода Верле и ме-
тода Бимана – Шофилда, у которых ошибки значительно падают при большей массе. При высоких 
массах преимущество в точности сохраняют методы скоростной Верле, с перескоками (leapfrog) и 
Бимана – Шофилда, демонстрируя наименьшие ошибки. 
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Таким образом, наиболее точными и устойчивыми методами среди рассмотренных оказались 
скоростной Верле, метод с перескоками (leapfrog) и метод Бимана – Шофилда, тогда как классический 
алгоритм Верле проявил наибольшую чувствительность и численную неустойчивость к изменению 
параметров системы. Метод Рунге – Кутты 4-го порядка показал надежную устойчивость при всех 
тестах, однако уступает модифицированным методам по точности в долгосрочных симуляциях. 

Выводы. Зависимость от числа частиц. При увеличении числа молекул N наблюдается 
устойчивый рост накопленной ошибки интегрирования у всех методов. Это связано с усилением 
численных погрешностей и влиянием случайных начальных условий. Методы с перескоками (leap-
frog), скоростной Верле и Бимана – Шофилда демонстрируют наименьшую MSE при любом N, тогда 
как стандартный алгоритм Верле оказывается наиболее чувствительным к росту размера системы. 
Метод Рунге – Кутты 4-го порядка остается численно устойчивым, но его относительное преимуще-
ство по точности уменьшается при больших N. 

Влияние глубины потенциальной ямы ε. С возрастанием ε среднеквадратичная ошибка увели-
чивается у всех методов, что особенно заметно у алгоритмов Верле и предиктор-корректора. Наиболее 
низкую MSE вновь демонстрируют методы с перескоками (leapfrog) и скоростной Верле, тогда как ме-
тод Рунге – Кутты 4-го порядка, хоть и устойчив, уступает им по точности при сильном взаимодействии. 

Влияние характерного расстояния σ. При увеличении σ система становится численно жест-
кой, что приводит к расходимости некоторых алгоритмов. Методы Верле, скоростной Верле и Би-
мана – Шофилда дали сбой (возникали NaN-значения), что свидетельствует о потере устойчивости. 
При этом методы с перескоками (leapfrog) и предиктор-корректор сохранили работоспособность, 
оставаясь стабильными при больших σ. 

Влияние массы молекул m. Рост массы частиц приводит к общему снижению MSE у всех ал-
горитмов за счет замедления динамики системы. Наибольшее уменьшение ошибок наблюдается у 
скоростного метода Верле и метода Бимана – Шофилда, что дополнительно подтверждает их эф-
фективность. Преимущество по точности при больших m сохраняют методы скоростной Верле, с 
перескоками (leapfrog) и Бимана – Шофилда. 

В целом методы скоростной Верле, с перескоками (leapfrog) и Бимана – Шофилда признаны наибо-
лее точными и устойчивыми для широкого диапазона условий моделирования. Классический алгоритм 
Верле продемонстрировал наибольшую чувствительность к изменениям параметров и численную не-
устойчивость. Метод Рунге – Кутты 4-го порядка оказался устойчивым во всех испытаниях, однако его 
точность может уступать модифицированным алгоритмам при длительном интегрировании.  
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Abstract. The relevance of the research is determined by the widespread demand for molecular dynamics for 

modeling processes at the atomic level, where the choice of a numerical integration method significantly affects the 
accuracy and stability of the results. The purpose of the study is a comparative analysis of various numerical integra-
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tion methods in molecular dynamics implemented in C++ with a single interface. A single software platform has been 
developed for generating initial conditions, integrating the system using the same methods, and evaluating accuracy by 
the root-mean-square error. The work includes a theoretical analysis of algorithms and their numerical verification on 
a model problem with the potential Lennard-Jones. The method Runge-Kutta 4th order [2], the classical Verlet algo-
rithm [3], the high-speed Verlet [3], the leapfrog method [4], the Beeman-Schofield method [5] and the predictor cor-
rector [6] was considered for the study. The main results demonstrate that the Werle modifications and the Bee-
man-Schofiltz method provide the lowest mean square error (MSE [7]) and high numerical stability for various model-
ing parameters, while the standard Wehrle algorithm is most sensitive to error accumulation. The data obtained can be 
used to optimize computational experiments in problems of solid state physics, chemistry, materials science, and bio-
molecular research. 
 

Keywords: molecular dynamics; numerical integration methods; algorithm stability; root-mean-square error; 
simulation of atomic systems; computational experiment. 
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