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О числе ретракций прямого произведения двух конечных цепей*1  
 

Вечтомов Евгений Михайлович1, Петров Андрей Александрович2 
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Аннотация. В работе исследуются ретракции прямого произведения двух конечных цепей. Под ретрак-

цией решетки A понимается идемпотентный гомоморфизм A в себя. Найдена и доказана формула для подсче-
та числа всех ретракций прямого произведения двухэлементной цепи на n-элементную цепь.  

 
Ключевые слова: ретракция, n-элементная цепь, числа Фибоначчи, прямое произведение цепей.  

 
1. Введение. Исходные понятия. Основным результатом работы является формула (20) для 

числа всех ретракций прямого произведения двухэлементной цепи и n-элементной цепи. Также от-
метим новое доказательство теоремы A о числе всех ретракций произвольной конечной цепи, в ко-
тором применяются вспомогательные функции, представляющие самостоятельный интерес.  

Полурешеткой называется идемпотентная коммутативная полугруппа. Если в полурешетке A, + 
задать бинарное отношение  формулой: a ba+b=b для любых a, b A, то получим упорядоченное 
множество A, , в котором a+b=sup{a, b} для всех a, b A, называемое верхней полурешеткой.  

Решеткой называется алгебраическая структура A, +, , для которой A, + и A,  – полуре-
шетки и операции сложения + и умножения  связаны законами поглощения x+xy=x и x(x+y)=x. При 
этом соответствующая полурешетке A, + верхняя полурешетка A,  удовлетворяет равенству 
ab=inf{a, b} для любых a, b A. Решетка называется решеткой с нулем, если она обладает аддитивно 
нейтральным (равносильно, мультипликативно поглощающим, наименьшим) элементом 0.  

Ретракцией решетки A назовем любой решеточный гомоморфизм e: AA, такой, что 
e(e(x))=e(x) для всех x X. Вместо e(x) будем писать просто ex. Элемент x A называется неподвиж-
ным элементом ретракции e, если ex=x, в противном случае элемент x будем называть подвижным 
элементом ретракции e. Элементы ex, x A, суть в точности неподвижные элементы ретракции e.  

Цепь – это линейно упорядоченное множество. Ясно, что любая цепь является решеткой.  
Обозначим через Cn n-элементную цепь и рассмотрим прямое произведение Cn×Cm={(a, b) | 

aCn, bCm}. Ясно, что Cn×Cm будет решеткой из nm элементов. 
Целью данной работы является вывод формулы для подсчета всех ретракций решетки Cn×C2.  
Задача нахождения числа ретракций конечных решеток возникла в рамках теории полумоду-

лей над полукольцами. Приведем некоторые исходные понятия этой теории [7, chapter 14].  
Полукольцом называется алгебраическая структура S, +,  с коммутативно-ассоциативной 

операцией сложения + и ассоциативной операцией умножения , дистрибутивной относительно 
сложения с обеих сторон. Общая теория полуколец изложена в известной книге Голана [7]. Полу-
кольцам с идемпотентным умножением посвящена наша работа [2]. 

Полумодулем над полукольцом S, или просто S-полумодулем, называется коммутативная полу-
группа A, + вместе с отображением SA  A, (s, a)sa, обладающим следующими свойствами (для 
любых s, t S и a, b A):  

(1) (s+t)a=sa+ta;  
(2) s(a+b)=sa+sb;  
(3) (st)a=s(ta).  

                                                                 
© Вечтомов Евгений Михайлович, Петров Андрей Александрович, 2025 

* Работа выполнена при финансовой поддержке РНФ, проект № 24-21-00117.  
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Замечание 1.1. Мы не предполагаем наличия нуля 0 и единицы 1 в полукольце S и существо-
вания нуля 0 в коммутативной полугруппе A, но даже если таковые в S и A имеются, то для S-
полумодулей A не предполагается выполнение следующих условий: 1a=a, 0a=0, s0=0 (s S, a A).  

Отображение f: AB S-полумодуля A в S-полумодуль B называется S-гомоморфизмом, если 
f(x+y)=f(x)+f(y) и f(sx)=sf(x) для любых x, y A и s S. Если S-гомоморфизм S-полумодулей является 
взаимно однозначным отображением, то он называется S-изоморфизмом. S-изоморфные полумоду-
ли обладают одними и теми же абстрактными свойствами.  

Пусть e – центральный мультипликативный идемпотент полукольца S, т. е. ee=e и s S es=se. 
На любом S-полумодуле A элемент e действует как идемпотентный S-гомоморфизм e: AA по пра-
вилу: e(x)=ex для всех x A. Такой S-гомоморфизм e назовем ретракцией S-полумодуля A; его образ 
e(A) будет подполумодулем S-полумодуля A, состоящим в точности из неподвижных элементов 
отображения e. В ряде случаев подполумодуль e(A) однозначно определяет сам S-полумодуль A. В 
частности, это происходит тогда, когда S={e} – одноэлементное полукольцо, A,  – конечная полу-
решетка (x+y=sup{x, y})), x A ex x или x A x ex. В работе [3] найдено число таких попарно 
неизоморфных полумодулей A с числом элементов, не превосходящим 5. В случае конечной цепи A 
ее подцепь B совпадает с образом e(A), вообще говоря, различных ретракций e. 

Отношение эквивалентности  на решетке A называется конгруэнцией на A, если abи cd вле-
кут (a+c)(b+d) и (ac)(bd) для любых a, b, c, d A (достаточно считать c=d). 

Отметим, что каждая ретракция e решетки A порождает конгруэнцию (e) на решетке A по 
правилу  

x(e)y означает ex=ey при любых x, y A. 
 

2. Число ретракций конечной цепи. Напомним, что числами Фибоначчи называются числа:  
F0=0, F1=1, F2=1, F3=2, F4=3, F5=5, F6=8, …, 

образованные по правилу Fn=Fn–1+Fn–2 для всех натуральных чисел n 2. Информацию о числах 
Фибоначчи можно найти, например, в параграфе 6.6 книги [5].  

 
Теорема А [8, p. 228]. Число всех ретракций n-элементной цепи равно числу Фибоначчи F2n с 

номером 2n. 
Теорема А опубликована J. M. Howie в 1971 году. В статье [9, Corollary 4.6] представлено другое 

доказательство этого результата. 
Авторам известны два доказательства данной теоремы, отличные от указанных выше. Первое 

из них опубликовано в работе [1, задача 3.3.1, с. 34–35].  
Приведем второе доказательство. 
Докажем сначала ряд вспомогательных результатов. 
Отождествим n-элементную цепь с отрезком первых n натуральных чисел с естественным по-

рядком:  
 1 2 3 …  n–1 n. (1) 

Для натуральных чисел m n положим:  
R(n) – число всех ретракций n-элементной цепи;  
R(n, m) – число ретракций n-элементной цепи с m неподвижными элементами;  
L(n) – число всех ретракций n-элементной цепи с неподвижными элементами 1 и n 2;  
L(n, m) – число ретракций n-элементной цепи с m 2 неподвижными элементами, среди кото-

рых 1 и n.  
Имеем:  

 R(n)= 


n

m
 mnR

1
),(  и L(n)= 



n

m
 mnL

2
).,(  (2) 

Легко видеть, что L(n, 2)=n–1 для любого натурального числа n 2. Поэтому число ретракций 
цепи (1) с m неподвижными числами i1 i2 i3 …  im равно  

 (i2–i1)(i3–i2)… (im–im–1). (3) 
Такие ретракции будем называть ретракциями типа i1 i2 i3 …  im, а число im–i1+1 – их 

длиной.  
Поэтому число R(n) равно сумме произведений (3) по всевозможным выборкам i1 i2 i3 … 

 im из первых n натуральных чисел.  
Далее докажем ряд формул для чисел L(n, m) и R(n, m).  
Следующие равенства очевидны (для соответствующих натуральных n):  

 R(n, 1)=n, R(n, n)=1, L(n, n)=1, R(n, n–1)=2n–2, L(n, n–1)=2n–4. (4) 
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Предложение 2.1. Для любых натуральных чисел n m 3 имеем: 

 L(n, m)= 





2

2
).1,1()1(

mn

k
 mk+nLk  (5) 

Доказательство. Возьмем произвольную ретракцию типа 1=i1 i2 i3 …  im=n. Элемент i2 мо-
жет принимать любые значения k от 2 до n–m+2 включительно. Легко видеть, что число указанных 
ретракций при i2=k равно произведению (k–1)L(n–k+1, m–1). Тем самым получаем формулу (5).  

Предложение 2.2. Для любых натуральных чисел n m 2 имеем:  

 R(n, m)= 



n

mk
.mkLkn ),()1(  (6) 

Доказательство. Длина k любой ретракции типа i1 i2i3 …  im n-элементной цепи принима-
ет значения от m до n включительно. Число таких ретракций длины k равно (n–k+1)L(k, m). Поэтому 
имеет место формула (6).  

Предложение 2.3. Для любого натурального числа n 3 верно равенство  

 L(n, 3)=n(n–1)(n–2)/6=
3
nC . (7) 

Доказательство. С учетом формулы (4) по формуле (5) получаем:  
L(n, 3)=1(n–2)+2(n–3)+…+(n–2)1= 

=(n–1–1)+2(n–2–1)+…+(n–2)(n–(n–2)–1)= 
=(n–1)(1+2+…+n–2)–(12+22+…+(n–2)2)= 

=3(n–1)(n–2)(n–1)/6–(n–2)(n–1)(2n–3/6= 

=(n–2)(n–1)(3n–3–2n+3)/6=(n–2)(n–1)n/6=
3
nC .  

Предложение 2.4. Для любых натуральных чисел n m верно равенство  
 R(n, m)=L(n+1, m+1), (8) 

в частности, R(n, 2)=L(n+1, 3)=
3

1nC . 

Действительно, записав слагаемые правой части формулы (5) для L(n+1, m+1) в обратном по-
рядке, получим правую часть формулы (6), т. е. значение R(n, m).  

Предложение 2.5. Для любого натурального числа n 2 имеем:  
 L(n)=R(n–1). (9) 

В самом деле, в силу формул (2) и (8) получаем:  
L(n)=L(n, 2)+L(n, 3)+…+L(n, n)=R(n–1, 1)+R(n–1,2)+…+R(n–1, n–1)=R(n–1).  

Предложение 2.6. Для любых натуральных чисел n m 2 верно равенство 

 R(n, m)= 



n

mk
.mkRkn )1,1()1(  (10) 

Доказательство вытекает из формул (6) и (8).  
Предложение 2.7. Для любого натурального числа n 3 верно равенство  

 R(n, n–2)=2n2–7n+6. (11) 
Доказательство. По формуле (8) R(n, n–2)=L(n+1, n–1). Поэтому рассмотрим ретракции длины 

n+1 с двумя подвижными элементами, не равными 1 и n+1. Число распределений двух элементов на 
n–1 местах равно числу (n–1)(n–2)/2 сочетаний из n–1 по 2. Если подвижные элементы расположе-
ны рядом, то получаем 3(n–2) ретракций. В противном случае имеем 4((n–1)(n–2)/2–(n–2)) ретрак-
ций. В результате получаем:  

R(n, n–2)=2(n2–3n+2–2n+4)+3n–6=2n2–7n+6.  
Используя формулы (4), (5), (7), (8) и (11), вычислим значения L(n, m) при n 9 и 2 m n. Имеем:  
L(2, 2)=1,  
L(3, 2)=2, L(3, 3)=1,  
L(4, 2)=3, L(4, 3)=4, L(4, 4)=1,  
L(5, 2)=4, L(5, 3)=10, L(5, 4)=6, L(5, 5)=1,  
L(6, 2)=5, L(6, 3)=20, L(6, 4)=21, L(6, 5)=8, L(6, 6)=1,  
L(7, 2)=6, L(7, 3)=35, L(7, 4)=56, L(7, 5)=36, L(7, 6)=10, L(7, 7)=1,  
L(8, 2)=7, L(8, 3)=56, L(7, 4)=126, L(8, 5)=36, L(8, 6)=55, L(8, 7)=12, L(8, 8)=1,  
L(9, 2)=8, L(9, 3)=84, L(9, 4)=252, L(9, 5)=330, L(9, 6)=220, L(9, 7)=78,  
L(9, 8)=14 и L(9, 9)=1.  
Имея найденные значения функции L(n, m), по формуле (8) получаем: 



 
                              Mathematical bulletin of Vyatka State University, Is. 2 (33), 2025                                    

 

7 

R(1, 1)=1, 
R(2, 1)=2, R(2, 2)=1,  
R(3, 1)=3, R(3, 2)=4, R(3, 3)=1,  
R(4, 1)=4, R(4, 2)=10, R(4, 3)=6, R(4, 4)=1,  
R(5, 1)=5, R(5, 2)=20, R(5, 3)=21, R(5, 4)=8, R(5, 5)=1,  
R(6, 1)=6, R(6, 2)=35, R(6, 3)=56, R(6, 4)=36, R(6, 5)=10, R(6, 6)=1,  
R(7, 1)=7, R(7, 2)=56, R(7, 3)=126, R(7, 4)=120, R(7, 5)=55, R(7, 6)=12, R(7,7)=1,  
R(8, 1)=8, R(8, 2)=84, R(8, 3)=252, R(8, 4)=330, R(8, 5)=220, R(8, 6)=78, R(8, 7)=14 и R(8, 8)=1.  
Суммируя по m значения R(n, m) в предыдущих строках, получаем по формуле (2):  

R(1)=1, R(2)=3, R(3)=8, R(4)=21, R(5)=55,  
R(6)=144, R(7)=377, R(8)=987.  

Мы видим, что напрашивается следующее рекуррентное соотношение: R(n)=3R(n–1)–R(n–2) 
при всех натуральных n 3.  

Предложение 2.8. Для любого натурального числа n 3 имеем:  
 R(n+1)=R(n)+2R(n–1)+3R(n–2)+…+(n–2)R(3)+(n–1)R(2)+nR(1)+n+1. (12) 

Доказательство. Распишем R(n+1) на основании формул (2) и (10):  
R(n+1, 1)=n+1 

R(n+1, 2)=nR(1, 1)+(n–1)R(2, 1)+(n–2)R(3, 1)+…+3R(n–2, 1)+2R(n–1, 1)+R(n, 1) 
R(n+1, 3)=(n–1)R(2, 2)+(n–2)R(3, 2)+…+3R(n–2, 2)+2R(n–1, 2)+R(n, 2), 

…………..., 
R(n+1, n–1)=3R(n–2, n–2)+2R(n–1, n–2)+R(n, n–2) 

R(n+1, n)=2R(n–1, n–1)+R(n, n–1) 
R(n+1, n+1)=R(n, n). 

Просуммируем последовательно выписанные равенства почленно, начиная со второго равен-
ства и первых с конца слагаемых, а затем прибавим n+1. В результате получим равенство (12).  

Предложение 2.9. Для любого натурального числа n 3 имеем:  
 R(n)=R(n–1)+3R(n–2)+2R(n–2)+2R(n–3)+…+2R(1)+2. (13) 

Доказательство. Для любой ретракции e n-элементной цепи (1) выполняется ровно одно из 
следующих условий:  

1) e(1)=1 и e(n)=n;  
2) e(1) 1 и e(n) n;  
3) e(1)=1 и e(n) n;  
4) e(1) 1 и e(n)=n.  
Число ретракций e с условием 1) равно R(n–1) по формуле (9). 
Ясно, что число ретракций e с условием 2) равно R(n–2).  
Рассмотрим условие 3). Число k=e(n) принимает значение от 1 до n–1. Число таких ретракций 

e, в силу формулы (9), равно 1+R(1)+R(2)+…+R(n–2).  
Условие 4) симметрично условию 3). Поэтому число ретракций e с условием 4) также равно 

1+R(1)+R(2)+…+R(n–2).  
Суммируя указанные выражения, получаем искомое равенство (13).  
Предложение 2.10. Для любого натурального числа n 3 верно равенство  

 R(n)=3R(n–1)–R(n–2). (14) 
Доказательство проведем индукцией по n. Предположив справедливость равенства (14) для всех 
натуральных чисел k (вместо n), 3 k n, докажем его для n+1. Подставив в равенстве (12) 
R(k)=3R(k–1)–R(k–2) для всех k от 3 до n, получаем:  

R(n+1)=3R(n–1)–R(n–2)+2(3R(n–2)–R(n–3))+…+(n–2)(3R(2)–R(1))+ 
(n–1)R(2)+nR(1)+n+1= 

=3[R(n–1)+2R(n–2)+…+(n–2)R(2)+(n–1)R(1)+n]– 
[R(n–2)+2R(n–3)+…+(n–2)R(1)+n–1]=3R(n)–R(n–1),  

поскольку (n–1)R(2)=3(n–1)R(1) и nR(1)+n+1=2n+1=3n–(n–1).  
Предложение доказано.  
Лемма 2.1. Fn+2=3Fn–Fn–2 для любого натурального числа n 3.  
В самом деле,  

Fn+2=Fn+1+Fn=(Fn+Fn–1)+Fn=(Fn+Fn–1+Fn–2)+Fn–Fn–2=3Fn–Fn–2.  
Теперь 
Доказательство теоремы А вытекает из формулы (14), леммы 2.1 и равенств R(1)=1=F2, 

R(2)=3=F4.  
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Следствие 2.1. Последовательность чисел R(1), R(2), …, R(n),… представляет собой последо-
вательность чисел Фибоначчи с четными натуральными номерами.  

Следствие 2.2. На n-элементной цепи – с точностью до изоморфизма – существует ровно F2n 
полумодулей над одноэлементным полукольцом.  

Следствие 2.3. Для любого натурального числа n 3 имеем:  
 R(n)=2R(n–1)+R(n–2)+…+R(1)+1. (15) 

Доказательство. Подставим в равенства (13) и (14) n+1 вместо n. Приравняем правые части 
полученных равенств. Выразив R(n) через остальные слагаемые, получим равенство (15).  

Следствие 2.4. Для любого натурального числа n 3 имеем:  
 F2n=2F2n–2+F2n–4+…+F2+1. (16) 

В силу теоремы А формула (15) превращается в формулу (16).  
Аналогично, формулы (12) и (13) дают соответствующие равенства для чисел Фибоначчи с 

четными номерами.  
Замечание 2.1. Равенства (12)–(15) представляют собой рекуррентные соотношения для 

функции R(n), но только равенство (14) является «свернутой» формулой для R(n) с начальными 
условиями R(1)=1 и R(2)=3.  

 
3. Число ретракций прямого произведения двухэлементной и n-элементной цепей. Рас-

смотрим прямое произведение AB решеток A и B. Пусть e1 и e2 – ретракции решеток A и B соответ-
ственно. Тогда отображение e1e2: ABAB, определенное формулой  

(e1e2)((a, b))=(e1a, e2b) при a A и b B,  
является ретракцией решетки AB.  

Лемма 3.1 [4, с. 43, теорема 13]. Произвольная конгруэнция  на решетке AB имеет вид 
=12, где 1 (2) – конгруэнция на решетке A (B) и (a1, b1)(12)(a2, b2) означает a11a2 и b12b2 для 
любых a1, a2 A и b1, b2 B. 

Пусть  – произвольная конгруэнция на прямом произведении AB решеток A и B. В контексте 
леммы 3.1 =12. Предположим, что конгруэнция 1 (2) индуцируется некоторой ретракцией e1 
(e2) решетки A (B): 1=(e1) и 2=(e2). Ретракция e1e2 порождает исходную конгруэнцию , то есть 
=(e1e2). Заметим, что конгруэнция  может индуцироваться ретракцией решетки AB, отличной 
от ретракций вида e1e2. Ретракции вида e1e2 будем называть каноническими ретракциями, в про-
тивном случае – неканоническими.  

Легко видеть, что имеет место 
Лемма 3.2. Если A и B – конечные решетки, имеющие соответственно k и l ретракций, то ре-

шетка AB имеет ровно kl канонических ретракций.  
Предложение 3.1. Пусть A, B – произвольные решетки. Для того чтобы ретракция e решетки 

AB была канонической, необходимо и достаточно, чтобы выполнялось следующее утверждение: ес-
ли (e)=12, a1, a2 A, b1, b2 B, e((a1, b1))=(a1, b1) и e((a2, b2))=(a2, b2), то a11a2a1=a2 и 
b12b2b1=b2.  

Доказательство. Необходимость. Допустим, что e=e1e2 для ретракции e1 на решетке A и ре-
тракции e2 на решетке B и выполняется условие из указанного в формулировке утверждения. Тогда 
1=(e1), a1=e1(a1), a2=e1(a2), стало быть, a11a2  e1(a1)=e1(a2). Аналогично, b12b2  b1=b2.  

Достаточность. Пусть верно утверждение из формулировки данного предложения. Для лю-
бых a A и b B положим e1(a)=p1(e((a, b))) и e2(b)=p2(e((a, b))), где p1((x, y))=x и p2((x, y))=y для всех 
x A и y B. Покажем, что значение e1(a) не зависит от второй координаты b пары (a, b). Возьмем 
пару (a, c), где c B. Поскольку e((a, b))(a, b) и e((a, c))(a, c), то p1(e((a, b)))1a1p1(e((a, c))). Поэто-
му p1(e((a, b)))=p1(e((a, c))). Аналогично доказывается, что значение e2(b) не зависит от первой ко-
ординаты пары (a, b). Легко видеть, что отображения e1 и e2 служат ретракциями решеток A и B со-
ответственно. Равенство e=e1e2 очевидно.  

Пример 3.1. Найдем все ретракции решетки C2C2={(0, 0), (0, 1), (1, 0), (1, 1)}, где C2={0, 1} при 
0 1. Цепь C2 имеет три ретракции: константные A{0}, A{1} и тождественную, и две конгруэнции: 
отношение равенства и одноклассовую. Поэтому решетка C2C2 обладает девятью каноническими 
ретракциями и четырьмя конгруэнциями. Одноклассовая конгруэнция на решетке C2C2 порождается 
четырьмя ретракциями, отношение равенства – только тождественной ретракцией, каждая из двух 
двухклассовых конгруэнций – 2 каноническими ретракциями. Возьмем на решетке C2C2 конгруэн-
цию  с двумя классами {0, 1}{0} и {0, 1}{1}. И рассмотрим отображение e: C2C2C2C2, переводящее 
класс C2{0} в элемент (0, 0), а класс C2{1} – в элемент (1, 1). По предложению 3.1 e будет неканониче-
ской ретракцией решетки C2C2, порождающей конгруэнцию . Аналогично, двойственная к e нека-
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ноническая ретракция порождает конгруэнцию с двумя классами {0}C2 и {1}C2. Таким образом, ре-
шетка C2C2 имеет 11 ретракций, включая две неканонические ретракции.  

Обозначим Ret(n, m) – число всех ретракций прямого произведения n-элементной цепи Cn и m-
элементной цепи Cm и найдем рекуррентную формулу для Ret(n, 2) числа всех ретракций решетки 
C=Cn×C2. 

По лемме 3.2 число всех канонических ретракций на C равно F2n·F4=3F2n. 
Число неканонических ретракций на C в случае, если конгруэнция цепи Cn одноклассовая, равно 

(n–1)+(n–2)+…+2+1=n(n–1)/2. 
Далее обозначим f(n) – число неканонических ретракций на C в случае, если конгруэнция цепи 

Cn неодноклассовая. 
Лемма 3.3. Для любого натурального числа n≥2 справедлива формула 

 f(n)=1·[f(n–1)+F2(n–1)]+2·[f(n–2)+F2(n–2)]+…+(n–1)·[f(1)+F2]. (17) 
Доказательство. Обозначим цепь Cn как 1 2 3 … < k < …  n–1 n, а цепь C2, соответственно, 

ab. Найдем все конгруэнции на C, порождающие неканонические ретракции, в случае, когда кон-
груэнция цепи Cn неодноклассовая. Ясно, что при этом конгруэнция на C2 должна быть одноклассо-
вой. Рассмотрим конгруэнции на Cn, одним из классов которых является отрезок 1 2 3 … < k, где 
k<n. Любому элементу из данного отрезка будет соответствовать элемент a цепи C2. Поэтому всего 
получим k таких конгруэнций. В каждой из них остальным n–k элементам цепи Cn будут соответ-
ствовать конгруэнции, порождающие неканонические ретракции решетки Cn–k×C2 и канонические 
ретракции n–k элементной цепи, всего f(n–k)+F2(n–k) ретракций. Теперь, суммируя по всем k от 1 до 
n–1, получаем требуемую формулу. 

Лемма 3.4. Для любого натурального числа n≥2 справедлива формула 
 f(n)=3f(n–1)–f(n–2)+F2(n–1). (18) 

Доказательство. В силу леммы 3.3  
f(n)–f(n–1)= 

=(1·[f(n–1)+F2(n–1)]+2·[f(n–2)+F2(n–2)]+…+(n–1)·[f(1)+F2])– 
–(1·[f(n–2)+F2(n–2)]+2·[f(n–3)+F2(n–3)]+…+(n–2)·[f(1)+F2])= 

=[f(n–1)+F2(n–1)]+ ([f(n–2)+F2(n–2)]+…+[f(1)+F2])= 
=[f(n–1)+F2(n–1)]+( f(n–1)– f(n–2))= 2 f(n–1)– f(n–2)+ F2(n–1), 

откуда 
f(n)=3f(n–1)–f(n–2)+F2(n–1). 

Пример 3.2. Вычислим несколько первых значений f(n) и Ret(n, 2). Имеем f(1)=0, f(2)=1. Тогда  
f(3)=3f(2) –f(1)+F4=3·1 – 0+3=6; 

f(4)=3f(3) – f(2)+ F6=3·6 – 1+8=25; 
f(5)=3f(4) – f(3)+ F8=3·25 – 6+21=90; 

f(6)=3f(5) – f(4)+ F10=3·90 – 25+55=300; 
f(7)=3f(6) – f(5)+ F12=3·300 – 90+144=954, 

поэтому 
Ret(2, 2)=f(2)+3F4+2·1/2=1+3·3+1=11; 
Ret(3, 2)=f(3)+3F6+3·2/2=6+3·8+3=33; 

Ret(4, 2)=f(4)+3F8+4·3/2=25+3·21+6=94; 
Ret(5, 2)=f(5)+3F10+5·4/2=90+3·55+10=265; 

Ret(6, 2)=f(6)+3F12+6·5/2=300+3·144+15=747; 
Ret(7, 2)=f(7)+3F14+7·6/2=954+3·377+21=2106. 

Замечание 3.1. По формуле (18)  
f(n)=3f(n–1)–f(n–2)+F2(n–1), 

причем f(1)=0, f(2)=1=F2. 
Тогда  

f(3)=3f(2) –f(1)+F4=3F2–0+F4=3F2+1F4=F4F2+F2F4; 
f(4)=3f(3) – f(2)+ F6=3(3F2+1F4)– F2+ F6=8F2+3F4+1F6= F6F2+ F4F4+ F2F6; 
f(5)=3f(4) – f(3)+ F8=3(8F2+3F4+1F6)–(3F2+1F4)+F8=21F2+8F4+3F6+1F8= 

= F8F2+ F6F4+ F4F6+ F2F8; 
f(6)=3f(5) – f(4)+ F10=3(21F2+8F4+3F6+1F8)–(8F2+3F4+1F6) +F10= 

=55F2+21F4+8F6+3F8+1F10= F10F2+ F8F4+ F6F6+ F4F8+ F2F10. 
Предложение 3.2. Для любого натурального числа n≥2 справедлива формула 

 f(n) = )( 22 j
nji

i FF 


. (19) 

Доказательство проведем индукцией по n. База индукции проверена в замечании 3.1.  
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Пусть для натуральных чисел, меньших n, формула верна. Тогда  
f(n)= 3f(n–1)–f(n–2)+F2(n–1)= 

=3(F2(n-2)F2+F2(n-3)F4+…+F4F2(n–3)+ F2F2(n-2))– 
–(F2(n-3)F2+ F2(n-4)F4+…+ F4 F2(n-4)+ F2 F2(n-3)) +F2(n–1)= 

=(3F2(n-2)– F2(n-3))F2+(3F2(n-3)– F2(n-4))F4+…+(3F4– F2)F2(n-3)+3F2F2(n-2)+1F2(n–1)= 
=F2(n-1)F2+ F2(n-2)F4+…+ F6F2(n-3)+ F4F2(n-2)+ F2F2(n–1). 

Предложение доказано. 
Таким образом, суммируя вышесказанное, получаем следующий результат.  
Теорема 3.1. Для натурального числа n имеет место формула 

 Ret(n, 2)=f(n)+3F2n+n(n–1)/2= )( 22 j
nji

i FF 


+3F2n+n(n–1)/2. (20) 

Пример 3.3. Вычислим с помощью формулы (20) несколько первых значений Ret(n, 2): 

Ret(2, 2) = )( 2
2

2 j
ji

i FF 


+3F4+2·(2–1)/2= F2·F2+3F4+1= 1·1+3·3+1=11; 

Ret(3, 2) = )( 2
3

2 j
ji

i FF 


+3F6+3·(3–1)/2= F2·F4+ F4·F2+3F6+3= 2·1·3+3·8+3=33; 

Ret(4, 2) = )( 2
4

2 j
ji

i FF 


+3F8+4·(4–1)/2= F2·F6+ F4·F4+ F6·F2+3F8+6=2·1·8+3·3+3·21+6=94; 

Ret(5, 2) = )( 2
5

2 j
ji

i FF 


+3F10+5·(5–1)/2= F2·F8+ F4·F6+ F6·F4 + F8·F2+3F10+10= 

=2·1·21+2·3·8+3·55+10=265. 
Замечание 3.2. В статье [6] получена формула для числа всех ретрактов прямого произведе-

ния CmCn при любых натуральных числах m и n. В частности, число ретрактов решетки C2C2 равно 
10, в то время как число ее ретракций равно 11. Отметим, что ретракт решетки может быть образом 
ее различных ретракций. 
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Аннотация. Актуальность исследования определяется широкой востребованностью молекулярной ди-

намики для моделирования процессов на атомном уровне, где выбор численного метода интегрирования суще-
ственно влияет на точность и устойчивость результатов. Цель исследования – сравнительный анализ различных 
численных методов интегрирования в молекулярной динамике, реализованных на языке C++ с единым интер-
фейсом. Разработана программная платформа для генерации начальных условий, интегрирования системы 
одинаковыми методами и оценки точности по среднеквадратичной ошибке. Работа включает теоретический 
анализ алгоритмов и их численную верификацию на модельной задаче с потенциалом Леннарда-Джонса. Для 
исследования были рассмотрены метод Рунге – Кутты 4-го порядка [2], классический алгоритм Верле [3], ско-
ростной Верле [3], метод с перескоками (leapfrog) [4], метод Бимана – Шофилда [5] и предиктор-корректор [6]. 
Основные результаты демонстрируют, что модификации Верле и метод Бимана – Шофилда обеспечивают 
наименьшую среднеквадратичную ошибку (MSE [7]) и высокую численную устойчивость при различных пара-
метрах моделирования, в то время как стандартный алгоритм Верле наиболее чувствителен к накоплению по-
грешностей. Полученные данные могут быть использованы для оптимизации вычислительных экспериментов в 
задачах физики твердого тела, химии, материаловедения и биомолекулярных исследований. 

 
Ключевые слова: молекулярная динамика, численные методы интегрирования, устойчивость алго-

ритмов, среднеквадратичная ошибка, симуляция атомных систем, вычислительный эксперимент. 

 
Введение. Молекулярная динамика [1] – важный метод численного моделирования, позво-

ляющий отслеживать эволюцию атомных и молекулярных систем через интегрирование классиче-
ских уравнений движения. Эффективность и стабильность моделирования во многом зависят от 
выбранного численного алгоритма. Целью настоящей работы является сравнительный анализ чис-
ленных методов интегрирования в молекулярной динамике, их реализация в единой программной 
платформе и оценка точности и устойчивости при различных параметрах моделирования. Основ-
ные задачи исследования состоят в следующем: 

– Разработка единой программы на C++ для реализации и сравнения алгоритмов интегриро-

вания. 

– Численная верификация корректности работы методов. 

– Оценка точности (через среднеквадратичную ошибку, MSE) и устойчивости при различных 

шагах интегрирования. 

Математическая модель. Рассматривается замкнутая система, состоящая из однотипных 

молекул, расположенных в кубе заданного объема     . Гамильтониан системы имеет вид [1]: 

  ∑
 

 
      

 

 

   

 ∑          

 

   

  
 
 

(1) 
где: 

– m – масса молекулы; 

–     – радиус-вектор  -й молекулы; 
–    – скорость  -й молекулы; 

–       – потенциал межмолекулярного взаимодействия; 
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–  |     | – расстояние между i-й и j-й молекулами. 

Для описания взаимодействия используется потенциал Леннарда-Джонса [1]: 

       [(
 

 
)
  

  (
 

 
)
 

]  
 

         (2) 
где: 

–    – глубина потенциальной ямы; 

–    – расстояние, на котором потенциал равен нулю; 

–    – расстояние между центрами двух молекул. 
Сила, действующая между двумя молекулами, определяется как градиент потенциала: 

 (   )       (   )      [ 
   

   
   

  

   
 ]

     

   
,    

  (3) 
где – расстояние между центрами двух молекул. 

На основе гамильтониана выводятся классические уравнения движения для молекул: 
   

  
    

 
   

  
 ∑   |     | 

 
   
   

. 

 
 

                      
(4) 

Обезразмеривание упрощает уравнения, позволяя работать с универсальными безразмерны-
ми параметрами:  

–    – глубина потенциальной ямы; 

–    – расстояние, на котором потенциал равен нулю; 

–    – масса молекулы. 

Введем безразмерные переменные на основе характерных масштабов системы: 

–     
 

 
  – безразмерное расстояние; 

–     
 

√   

 

  – безразмерное время; 

–     
 √   

 

 
  – безразмерная скорость; 

–     
  

 
  – безразмерные силы. 

После замены исходные уравнения движения приводятся к виду: 
   

 

   
    

 , 
   

 

   
    

 , 

            
 

           (5) 

где    
      

   
Начальные и граничные условия. Начальные координаты молекул равномерно распреде-

ляются внутри куба со стороной  , определяемой числом частиц и заданной плотностью. Началь-
ные скорости формируются по нормальному распределению с нулевым средним и дисперсией  , 
при этом осуществляется корректировка для обнуления суммарного импульса системы. 

Для снижения граничных эффектов применяются отражающие граничные условия, при вы-
ходе молекулы за границы куба ее координата отражается, а соответствующая компонента скоро-
сти меняет знак. 

Численные методы интегрирования. 
– Метод Рунге – Кутты 4-го порядка – высокоточный метод с локальной ошибкой       . Но-

вое значение функции считается так: 

        
  

 
                 

(6) 

где: 
            

        
  

 
    

  

 
    

    (   
  

 
    

  

 
  ) 

                     

 
 
 
 
 

(7) 
– Метод Верле – метод, сохраняющий энергию на длительных временах. 
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 (8) 

Предполагает хранение координат с предыдущего шага. 
– Скоростной метод Верле – модификация метода Верле с явным учетом скоростей. 

             
 

 
      

        
 

 
            

 
 
 

(9) 
– Метод с перескоками (leapfrog) разделяет обновление координат и скоростей на полушагах. 

 
  

 
 

    
 

 
     

         
  

 
 
   

      
  

 
 
 

 

 
       

 
 
 
 
 

(10) 
– Метод Бимана – Шофилда использует информацию о силах на предыдущем шаге для повы-

шения точности. 

             
   

 
           

        
  

 
                 

 
 
 

(11) 
Предусматривает использование ускорений, вычисленных на предыдущем шаге моделирования. 
– Предиктор-корректор – предсказывает состояние системы и корректирует его на основе 

новых вычислений сил. 

    
 

         
 

 
      

    
 

         

             
 

 
    
 

    

        
 

 
(       

 
)   

 
 
 

 
 

(12) 

 
Для методов Верле и с перескоками (leapfrog) критически важно отслеживать сохранение 

полной энергии системы на протяжении всего моделирования. Это позволяет оценить коррект-
ность численного интегрирования и устойчивость симуляции. Тем не менее в рамках данной рабо-
ты контроль энергии не осуществлялся. 

Для сравнения методов вычисляется среднеквадратичная ошибка (MSE) позиций молекул 
относительно эталонного метода (выбираемого пользователем). Накопленная MSE усредняется по 
всем шагам моделирования для оценки долговременной стабильности методов. 

Для объективной оценки точности и производительности методов интегрирования уравне-
ний движения в молекулярной динамике была разработана специализированная программа на C++. 
Программа реализует следующие ключевые функции: 

– генерация начальных условий (с заданной плотностью); 
– генерация начальных скоростей по нормальному распределению с последующей коррекци-

ей для обнуления общего импульса системы; 
– интеграция траекторий шестью различными методами; 
– вычисление среднеквадратичной ошибки (MSE) позиций молекул относительно эталонного 

решения; 
– возможность рассматривать модель пошагово. 
Разработанная программа реализует уникальную схему сравнения, при которой все методы 

интегрирования выполняются параллельно на идентичных начальных условиях с синхронизацией 
на каждом шаге моделирования. Все методы интегрирования запускаются с одинаковыми началь-
ными условиями, что обеспечивает корректность сравнения. Пользователь может выбрать любой 
из реализованных методов в качестве эталонного для расчета MSE. По умолчанию установлен ме-
тод Рунге – Кутты 4-го порядка как теоретически наиболее точный. Внешний вид программы пред-
ставлен на рисунке 1. 
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Рис 1. Внешний вид программы 

 
Была выполнена серия экспериментов с использованием различных эталонных методов. Ре-

зультаты моделирования после 10 000 шагов при различных начальных условиях представлены в 
табл. 1–10. Табл. 1–3 содержат сравнение в зависимости от числа молекул, табл. 4–6 – от значения 
параметра ε, табл. 7–8 – от значения σ, а табл. 9–10 – от массы молекул m. 

 
Таблица 1  

10 молекул,     , дисперсия начальных скоростей молекул 6 усл. ед.,  
плотность 5 молекул/усл. ед3.,          , масса каждой молекулы 0,1 усл. ед.   

Эталонный 
метод 

Рунге –
Кутты 4 

Верле 
Скоростной 

Верле 
С перескока-

ми 
Бимана – 
Шофилда 

Предиктор-
корректор 

Среднее MSE 

Рунге – Кутты 4 – 3.3100360638 2.2898682149 2.1232286169 2.2869681771 2.3140359918 2.4648274129 

Верле 3.3100360638 – 3.0844523786 3.3020672680 3.4195531569 2.9295180608 3.2091253856 

Скоростной 
Верле 

2.2898682149 3.0844523786 – 1.5810178947 2.0636582703 2.3913571445 2.2820707806 

С перескоками 2.1232286169 3.3020672680 1.5810178947 – 1.8999596196 2.3642910427 2.2541128884 

Бимана – 
Шофилда 

2.2869681771 3.4195531569 2.0636582703 1.8999596196 – 2.2234322803 2.3787143008 

Предиктор-
корректор 

2.3140359918 2.9295180608 2.3913571445 2.3642910427 2.2234322803 – 2.4445269040 

 

Для следующего эксперимента количество молекул увеличено до 30. Начальные координаты 
и скорости сгенерированы заново при сохранении остальных параметров моделирования. 

 
Таблица 2 

30 молекул,     , дисперсия начальных скоростей молекул 6 усл. ед.,  
5 молекул/усл. ед3.,          , масса каждой молекулы 0,1 усл. ед.   

Эталонный 
метод 

Рунге – Кут-
ты 4 

Верле 
Скоростной 

Верле 
С переско-

ками 
Бимана – 
Шофилда 

Предиктор–
корректор 

Среднее MSE 

Рунге – Кутты 4 – 5.5670535546 4.4656635893 4.5755111600 4.6260248227 4.6189603152 4.7706426884 

Верле 5.5670535546 – 5.2017358280 5.3256159362 5.4409951064 5.5711764325 5.4213153715 

Скоростной 
Верле 

4.4656635893 5.2017358280 – 3.4284989854 3.7861826213 4.4701769800 4.2704516008 

С перескоками 4.5755111600 5.3256159362 3.4284989854 – 3.7957480494 4.6320376606 4.3514823583 

Бимана – 
Шофилда 

4.6260248227 5.4409951064 3.7861826213 3.7957480494 – 4.5982169319 4.4494335063 

Предиктор–
корректор 

4.6189603152 5.5711764325 4.4701769800 4.6320376606 4.5982169319 – 4.7781136640 
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Для следующего эксперимента количество молекул увеличено до 50. Начальные условия пере-
созданы при тех же параметрах плотности, массы и дисперсии скоростей. 

 
Таблица 3  

50 молекул,     , дисперсия начальных скоростей молекул 6 усл. ед.,  
плотность 5 молекул/усл. ед3.,          , масса каждой молекулы 0,1 усл. ед.   

Эталонный 
метод 

Рунге – Кут-
ты 4 

Верле 
Скоростной 

Верле 
С переско-

ками 
Бимана – 
Шофилда 

Предиктор–
корректор 

Среднее MSE 

Рунге – Кутты 
4 

– 6.1084328822 3.6532622098 3.7112421236 3.6787085636 4.1723742859 4.2648040130 

Верле 6.1084328822 – 5.3969655978 5.3433050948 5.2802530556 6.2756380319 5.6809189325 

Скоростной 
Верле 

3.6532622098 5.3969655978 – 2.4553632812 1.8414772796 4.2612499987 3.5216636734 

С перескока-
ми 

3.7112421236 5.3433050948 2.4553632812 – 2.3943194711 4.1448541042 3.6098168150 

Бимана – 
Шофилда 

3.6787085636 5.2802530556 1.8414772796 2.3943194711 – 4.3427835882 3.5075083916 

Предиктор–
корректор 

4.1723742859 6.2756380319 4.2612499987 4.1448541042 4.3427835882 – 4.6393800018 

 
Увеличение числа молекул сопровождается ростом среднеквадратичной ошибки, что обу-

словлено как усилением численных флуктуаций, так и спецификой генерации начальных скоро-
стей. На следующем этапе исследования будет рассмотрено влияние иных параметров системы. В 
качестве отправной точки проанализируем случай при ε = 1. Начальные координаты и скорости 
молекул будут сгенерированы заново. 

 
Таблица 4  

30 молекул,     , дисперсия начальных скоростей молекул 6 усл. ед.,  
плотность5 молекул/усл. ед3.,          , масса каждой молекулы 0,1 усл. ед.   

Эталонный  
метод 

Рунге – Кут-
ты 4 

Верле 
Скоростной 

Верле 
С переско-

ками 
Бимана – 
Шофилда 

Предиктор–
корректор 

Среднее MSE 

Рунге – Кутты 4 – 3.1990532090 3.5759952499 3.6211857614 3.7850295816 4.0540716264 3.6470670857 

Верле 3.1990532090 – 3.2037773575 3.3550943961 3.3832351822 3.9686682791 3.4219656848 

Скоростной 
Верле 

3.5759952499 3.2037773575 – 1.0035557254 1.5586050111 3.4874009495 2.5658668587 

С перескоками 3.6211857614 3.3550943961 1.0035557254 – 1.5896298901 3.7825449350 2.6704021416 

Бимана – 
Шофилда 

3.7850295816 3.3832351822 1.5586050111 1.5896298901 – 3.4180593449 2.7469118020 

Предиктор–
корректор 

4.0540716264 3.9686682791 3.4874009495 3.7825449350 3.4180593449 – 3.7421490270 

 
Несмотря на сохранение всех параметров системы, замена начальных координат и скоростей 

привела к заметным отличиям в значениях MSE (табл. 2 и 4). 
Для следующего эксперимента увеличен с 1 до 10, при этом все остальные параметры систе-

мы сохранены такими же, как в условиях табл. 4. 
 

Таблица 5  
30 молекул,     , дисперсия начальных скоростей молекул 6 усл. ед.,  

плотность 5 молекул/усл. ед3.,              , масса каждой молекулы 0,1 усл. ед.   
Эталонный  

метод 
Рунге – Кут-

ты 4 
Верле 

Скоростной 
Верле 

С переско-
ками 

Бимана – 
Шофилда 

Предиктор–
корректор 

Среднее MSE 

Рунге – Кутты 4 – 8.5058983354 5.8754341843 5.8194044050 6.0791595325 5.6840717857 6.3927936486 

Верле 8.5058983354 – 8.1433108772 8.3214806736 8.3285875381 8.2290232755 8.3056601400 

Скоростной 
Верле 

5.8754341843 8.1433108772 – 5.2302866456 4.9555142900 5.9707435615 6.0350579117 

С перескоками 5.8194044050 8.3214806736 5.2302866456 – 5.2033640739 6.0373216102 6.1223714817 

Бимана – 
Шофилда 

6.0791595325 8.3285875381 4.9555142900 5.2033640739 – 6.0626609824 6.1258572834 

Предиктор–
корректор 

5.6840717857 8.2290232755 5.9707435615 6.0373216102 6.0626609824 – 6.3967642431 
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В следующем эксперименте параметр увеличен с 10 до 25 при сохранении остальных пара-
метров системы. 

 
Таблица 6  

30 молекул,     , дисперсия начальных скоростей молекул 6 усл. ед.,  
плотность 5 молекул/усл. ед3.,              , масса каждой молекулы 0,1 усл. ед.   

Эталонный 
метод 

Рунге – Кут-
ты 4 

Верле 
Скоростной 

Верле 
С переско-

ками 
Бимана – 
Шофилда 

Предиктор–
корректор 

Среднее MSE 

Рунге – Кутты 4 – 6.9066114255 6.0278915804 5.8972311989 5.9998667658 5.9527658393 6.1568733620 

Верле 6.9066114255 – 6.9315803382 6.6211195207 6.7891036494 6.3351772189 6.7167184305 

Скоростной 
Верле 

6.0278915804 6.9315803382 – 5.6890279118 5.7247896620 5.8991396284 6.0544858242 

С перескоками 5.8972311989 6.6211195207 5.6890279118 – 5.7476889905 6.0675351940 6.0045205632 

Бимана – 
Шофилда 

5.9998667658 6.7891036494 5.7247896620 5.7476889905 – 6.0445100948 6.0611918325 

Предиктор–
корректор 

5.9527658393 6.3351772189 5.8991396284 6.0675351940 6.0445100948 – 6.0598255951 

 

Далее исследуется влияние параметра  . Для этого сгенерированы новые начальные условия. 
 

Таблица 7 
30 молекул,     , дисперсия начальных скоростей молекул 6 усл. ед.,  

плотность 5 молекул/усл. ед3.,             , масса каждой молекулы 0,1 усл. ед.   
Эталонный ме-

тод 
Рунге – Кут-

ты 4 
Верле 

Скоростной 
Верле 

C переско-
ками 

Бимана – 
Шофилда 

Предиктор–
корректор 

Среднее MSE 

Рунге – Кутты 4 – – 6.7671639325 6.6686417397 – 6.8114397659 6.7490818127 

Верле – – – – – – – 

Скоростной  
Верле 

6.7671639325 – – 6.4335179508 – 6.9103614528 6.7036811120 

C перескоками 6.6686417397 – 6.4335179508 – – 6.5517369846 6.5512988917 

Бимана – 
Шофилда 

– – – – – – – 

Предиктор–
корректор 

6.8114397659 – 6.9103614528 6.5517369846 – – 6.7578460678 

 
Для методов Верле и Бимана – Шофилда наблюдалась потеря численной устойчивости, со-

провождаемая выходом молекул за границы расчетной области и возникновением неопределенных 
значений координат (NaN), что свидетельствует о расходимости интегрирования. Для следующего 
эксперимента значение параметра σ увеличено с 2 до 3 при сохранении всех остальных параметров 
системы неизменными. 

 
Таблица 8  

30 молекул,     , дисперсия начальных скоростей молекул 6 усл. ед.,  
плотность 5 молекул/усл. ед3.,             , масса каждой молекулы 0,1 усл. ед.   

Эталонный ме-
тод 

Рунге – Кут-
ты 4 

Верле 
Скоростной 

Верле 
C переско-

ками 
Бимана – 
Шофилда 

Предиктор–
корректор 

Среднее MSE 

Рунге – Кутты 4 – – – 6.5101566040 – 6.8672520398 6.6887043219 

Верле – – – – – – – 

Скоростной  
Верле 

– – – – – – – 

C перескоками 6.5101566040 – – – – 6.8672520398 6.6887043219 

Бимана – 
Шофилда 

– – – – – – – 

Предиктор–
корректор 

6.8672520398 – – 6.9088849049 – – 6.8880684724 

 
Для методов Верле, скоростного Верле и Бимана – Шофилда наблюдалась потеря численной 

устойчивости, сопровождаемая выходом молекул за границы расчетной области и возникновением 
неопределенных значений координат (NaN), что свидетельствует о расходимости интегрирования. 
На следующем этапе проанализировано влияние массы молекул. Исходные условия были пересо-
зданы для случая      

Таблица 9  
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30 молекул,     , дисперсия начальных скоростей молекул 6 усл. ед.,  
плотность 5 молекул/усл. ед3.,          , масса каждой молекулы 1 усл. ед. 

Эталонный ме-
тод 

Рунге – Кут-
ты 4 

Верле 
Скоростной 

Верле 
С переско-

ками 
Бимана – 
Шофилда 

Предиктор–
корректор 

Среднее MSE 

Рунге – Кутты 4 – 6.6578740175 5.9967089301 5.9386020104 6.2436035527 5.5872538426 6.0848084707 

Верле 6.6578740175 – 6.6669356028 6.6313928156 6.8513325130 6.7994525972 6.7213975092 

Скоростной 
Верле 

5.9967089301 6.6669356028 – 5.1158552613 5.2984983381 5.6601091850 5.7476214635 

С перескоками 5.9386020104 6.6313928156 5.1158552613 – 5.1198747228 5.8947621433 5.7400973907 

Бимана – 
Шофилда 

6.2436035527 6.8513325130 5.2984983381 5.1198747228 – 5.9829873926 5.8992593038 

Предиктор–
корректор 

5.5872538426 6.7994525972 5.6601091850 5.8947621433 5.9829873926 – 5.9849130321 

 

Для следующего эксперимента масса молекул увеличена с до     , начальные координа-
ты и скорости пересозданы. 

 
Таблица 10 

30 молекул,     , дисперсия начальных скоростей молекул 6 усл. ед.,  
плотность 5 молекул/усл. ед3.,          , масса каждой молекулы    усл. ед.  

Эталонный 
метод 

Рунге – Кут-
ты 4 

Верле 
Скоростной 

Верле 
С переско-

ками 
Бимана – 
Шофилда 

Предиктор–
корректор 

Среднее MSE 

Рунге – Кутты 4 – 2.8030149445 1.4089900628 1.4478930799 1.4102251782 1.9765881149 1.8093422761 

Верле 2.8030149445 – 2.4761600045 2.6232408147 2.4936722658 2.8081993666 2.6408574792 

Скоростной 
Верле 

1.4089900628 2.4761600045 – 0.1471507998 0.0177859875 1.6880526030 1.1476278915 

С перескоками 1.4478930799 2.6232408147 0.1471507998 – 0.1629010689 1.7279904666 1.2218352460 

Бимана – 
Шофилда 

1.4102251782 2.4936722658 0.0177859875 0.1629010689 – 1.6696181637 1.1508405328 

Предиктор–
корректор 

1.9765881149 2.8081993666 1.6880526030 1.7279904666 1.6696181637 – 1.9740897430 

 
Результаты и обсуждение. Проведен ряд вычислительных экспериментов для оценки влия-

ния параметров системы на точность алгоритмов. Рассмотрены системы из N = 10, 30 и 50 молекул 
при различных значениях плотности и параметров потенциала Леннарда-Джонса (ε, σ), а также 
разные массы молекул. 

С увеличением числа молекул наблюдается рост накопленной ошибки интегрирования у всех 
методов из-за усиления численных погрешностей. При N = 10 все интеграторы демонстрируют от-
носительно низкую MSE, однако уже при N = 30 наблюдается ее существенный рост. Методы с пере-
скоками (leapfrog), скоростной Верле и Бимана – Шофилда показывают наименьшую MSE при лю-
бом N, тогда как стандартный метод Верле дает значительно большие ошибки. Это свидетельствует 
о лучшей стабильности модифицированных алгоритмов по сравнению с классическим методом 
Верле. Метод Рунге – Кутты 4-го порядка остается численно устойчивым во всех экспериментах, но 
его относительное преимущество по точности уменьшается при росте N. 

При увеличении глубины потенциальной ямы ε среднеквадратичная ошибка также возрастает 
для всех методов. Особенно заметен рост MSE у алгоритмов Верле и предиктор-корректора, тогда как 
методы с перескоками (leapfrog) и скоростной Верле сохраняют относительно низкие ошибки даже 
при больших ε. Метод Рунге – Кутты 4-го порядка остается стабильным при увеличении ε, однако 
начинает уступать модифицированным методам по точности на сильных взаимодействиях. 

При увеличении характерного расстояния σ система становится численно более жесткой, что 
приводит к неустойчивости некоторых методов. Так, стандартные схемы Верле, скоростной метод 
Верле и метод Бимана – Шофилда при больших σ приводят к расходимости расчета (возникают 
NaN-значения), тогда как методы с перескоками (leapfrog) и предиктор-корректор остаются рабо-
тоспособными. Это говорит о более высокой устойчивости этих алгоритмов при экстремальных 
значениях параметров потенциала. 

Увеличение массы частиц от 1 до 15 приводит к уменьшению MSE у всех методов за счет за-
медления динамики системы. Особенно ярко это проявляется для скоростного метода Верле и ме-
тода Бимана – Шофилда, у которых ошибки значительно падают при большей массе. При высоких 
массах преимущество в точности сохраняют методы скоростной Верле, с перескоками (leapfrog) и 
Бимана – Шофилда, демонстрируя наименьшие ошибки. 



 
                              Mathematical bulletin of Vyatka State University, Is. 2 (33), 2025                                    

 

19 

Таким образом, наиболее точными и устойчивыми методами среди рассмотренных оказались 
скоростной Верле, метод с перескоками (leapfrog) и метод Бимана – Шофилда, тогда как классический 
алгоритм Верле проявил наибольшую чувствительность и численную неустойчивость к изменению 
параметров системы. Метод Рунге – Кутты 4-го порядка показал надежную устойчивость при всех 
тестах, однако уступает модифицированным методам по точности в долгосрочных симуляциях. 

Выводы. Зависимость от числа частиц. При увеличении числа молекул N наблюдается 
устойчивый рост накопленной ошибки интегрирования у всех методов. Это связано с усилением 
численных погрешностей и влиянием случайных начальных условий. Методы с перескоками (leap-
frog), скоростной Верле и Бимана – Шофилда демонстрируют наименьшую MSE при любом N, тогда 
как стандартный алгоритм Верле оказывается наиболее чувствительным к росту размера системы. 
Метод Рунге – Кутты 4-го порядка остается численно устойчивым, но его относительное преимуще-
ство по точности уменьшается при больших N. 

Влияние глубины потенциальной ямы ε. С возрастанием ε среднеквадратичная ошибка увели-
чивается у всех методов, что особенно заметно у алгоритмов Верле и предиктор-корректора. Наиболее 
низкую MSE вновь демонстрируют методы с перескоками (leapfrog) и скоростной Верле, тогда как ме-
тод Рунге – Кутты 4-го порядка, хоть и устойчив, уступает им по точности при сильном взаимодействии. 

Влияние характерного расстояния σ. При увеличении σ система становится численно жест-
кой, что приводит к расходимости некоторых алгоритмов. Методы Верле, скоростной Верле и Би-
мана – Шофилда дали сбой (возникали NaN-значения), что свидетельствует о потере устойчивости. 
При этом методы с перескоками (leapfrog) и предиктор-корректор сохранили работоспособность, 
оставаясь стабильными при больших σ. 

Влияние массы молекул m. Рост массы частиц приводит к общему снижению MSE у всех ал-
горитмов за счет замедления динамики системы. Наибольшее уменьшение ошибок наблюдается у 
скоростного метода Верле и метода Бимана – Шофилда, что дополнительно подтверждает их эф-
фективность. Преимущество по точности при больших m сохраняют методы скоростной Верле, с 
перескоками (leapfrog) и Бимана – Шофилда. 

В целом методы скоростной Верле, с перескоками (leapfrog) и Бимана – Шофилда признаны наибо-
лее точными и устойчивыми для широкого диапазона условий моделирования. Классический алгоритм 
Верле продемонстрировал наибольшую чувствительность к изменениям параметров и численную не-
устойчивость. Метод Рунге – Кутты 4-го порядка оказался устойчивым во всех испытаниях, однако его 
точность может уступать модифицированным алгоритмам при длительном интегрировании.  
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Abstract. The relevance of the research is determined by the widespread demand for molecular dynamics for 

modeling processes at the atomic level, where the choice of a numerical integration method significantly affects the 
accuracy and stability of the results. The purpose of the study is a comparative analysis of various numerical integra-
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tion methods in molecular dynamics implemented in C++ with a single interface. A single software platform has been 
developed for generating initial conditions, integrating the system using the same methods, and evaluating accuracy by 
the root-mean-square error. The work includes a theoretical analysis of algorithms and their numerical verification on 
a model problem with the potential Lennard-Jones. The method Runge-Kutta 4th order [2], the classical Verlet algo-
rithm [3], the high-speed Verlet [3], the leapfrog method [4], the Beeman-Schofield method [5] and the predictor cor-
rector [6] was considered for the study. The main results demonstrate that the Werle modifications and the Be e-
man-Schofiltz method provide the lowest mean square error (MSE [7]) and high numerical stability for various mode l-
ing parameters, while the standard Wehrle algorithm is most sensitive to error accumulation. The data obtained can be 
used to optimize computational experiments in problems of solid state physics, chemistry, materials science, and bio-
molecular research. 
 

Keywords: molecular dynamics; numerical integration methods; algorithm stability; root-mean-square error; 
simulation of atomic systems; computational experiment. 
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Аннотация. В статье представлен опыт организации и проведения междисциплинарного квеста для 
студентов I–II курсов факультета компьютерных и физико-математических наук, приуроченного к 80-летию 
Победы в Великой Отечественной войне. Основное внимание уделено содержанию заданий по математике и 
программированию. Приводятся примеры сюжетных задач военно-патриотической тематики по математике с 
ответами, а также условия программистских задач с историческим контекстом, адаптированные для плат-
формы «Яндекс.Контест». Предложенные материалы могут быть использованы в учебно-воспитательной ра-
боте как со студентами младших курсов, так и со старшеклассниками. 

 
Ключевые слова: обучение математике, обучение программированию, патриотическое воспитание, 

сюжетные задачи, исторический контекст, квест. 

 
Патриотическое воспитание представляет собой одно из приоритетных направлений работы 

со студентами младших курсов. Данный тезис находит подтверждение в работе Е. А. Скобиной и 
Е. В. Севостьяновой, которые отмечают, что «поиск и актуализация форм и методов осуществления 
патриотического воспитания в вузе должны быть связаны как с общими нормативными докумен-
тами, определяющими содержание гражданско-патриотического воспитания, так и сложившимися 
педагогическими традициями, с учетом специфики вуза и возрастных особенностей студенчества» 
[6]. В русле данного подхода в статье описывается опыт организации и проведения междисципли-
нарного квеста с военно-патриотическим содержанием для студентов, обучающихся по информа-
ционно-технологическим, техническим и педагогическим направлениям подготовки.  

В конце 2024/2025 учебного года на факультете компьютерных и физико-математических 
наук был проведен традиционный междисциплинарный квест, включающий станции по математи-
ке, информатике и физике. Тематическая направленность заданий была посвящена 80-летию Побе-
ды в Великой Отечественной войне. Выбор военно-исторической тематики обусловлен не только 
юбилейной датой, но и данными исследований, согласно которым история и традиции выступают 
важным ресурсом для формирования патриотических чувств у студенческой молодежи [3]. 
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Цель мероприятия – формирование у студентов патриотического сознания, гражданской от-
ветственности, а также углубление междисциплинарных знаний в области математики, информа-
тики и физики. Достижение этой цели реализуется через вовлечение студентов в интеллектуально-
творческую деятельность, посвященную 80-летию Победы в Великой Отечественной войне. 

Образовательные задачи: 
1. Способствовать развитию междисциплинарного мышления через решение задач, требую-

щих интеграции знаний из разных предметных областей. 
2. Совершенствовать навыки командной работы, логического анализа, критического мышле-

ния, а также креативного подхода к решению задач. 
3. Повысить познавательную активность студентов за счет применения игровых и соревнова-

тельных форматов. 
Воспитательные задачи: 
1. Сформировать патриотические ценности и уважение к историческому наследию России на 

основе материалов, посвященных Великой Отечественной войне. 
2. Воспитывать гражданскую ответственность и социальную активность у студентов. 
3. Развивать чувство командного духа, взаимопомощи и уважения к соперникам в конкурсной 

среде. 
4. Популяризация научного знания через демонстрацию исторических достижений советских 

ученых и инженеров в годы войны. 
Формат проведения – квест по станциям. Команды последовательно посещают девять стан-

ций, на которых выполняют задания на время. Данный динамичный формат позволяет органично 
сочетать обучение, патриотическое воспитание, развивать командный дух, а также повышает ин-
терес к физико-математическим наукам за счет их интеграции в исторический контекст. 

Длительность – четыре часа. 
Для участия в квесте командам из 3–5 человек было необходимо заранее зарегистрироваться 

и выбрать название (рис. 1). 
 

 
Рис. 1. Объявление о проведении квеста 

 

В 2025 году в квесте приняли участие 14 команд. Помимо студентов факультета компьютер-
ных и физико-математических наук, к мероприятию присоединились студенты электротехническо-
го факультета и педагогического института ВятГУ. Таким образом, география участников охватила 
направления подготовки «Прикладная математика и информатика», «Математика и компьютерные 
науки», «Фундаментальная информатика и информационные технологии», «Педагогическое обра-
зование», «Электроэнергетика и электротехника» и «Мехатроника и робототехника». 
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В начале квеста организаторы разъяснили участникам правила и выдали маршрутные листы 
с индивидуальной последовательностью прохождения станций и схемой их расположения в уни-
верситетском корпусе (рис. 2). Каждую команду сопровождал куратор из числа преподавателей или 
студентов старших курсов. Задание для команд состояло из двух частей: 1) расположить знаковые 
сражения Великой Отечественной войны в хронологическом порядке; 2) из слов-подсказок, полу-
ченных на станциях, составить фразу, принадлежащую одной из важных из исторических лично-
стей, и определить автора высказывания (рис. 3). Члены команд могли самостоятельно распреде-
лять обязанности как при выполнении основных заданий, так и на различных станциях. 

 

 
Рис. 2. Вид маршрутного листа 

 
Поскольку число команд превышало количество станций, маршрутные листы были составле-

ны таким образом, чтобы на каждой станции одновременно находилось не более двух команд. Это 
ограничение было введено с учетом количества компьютеров в аудиториях и для создания ком-
фортных условий работы участников. На прохождение одной станции отводилось 15 минут. 

 

 
Рис. 3. Задания квеста 
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На каждой станции, названной в честь городов-героев, команды решали задачи, за которые 
начислялись баллы. Количество баллов определяло количество полученных подсказок, доступных 
для финального этапа. Одним из заданий было ответить на пять вопросов о соответствующем го-
роде-герое. Разрешалось пользоваться поисковыми системами, однако засчитывался только пол-
ный и точный ответ. Например, на вопрос «Когда Керчи было присвоено звание “Город-герой”?» 
необходимо было указать полную дату (день, месяц и год). Ответ, содержащий только месяц и год, 
не засчитывался.  

Рассмотрим более подробно задачи с некоторых станций: «Математика», «Комбинаторика и 
вероятность» и «Программирование». 

На станции «Математика» задачи имели различную степень сложности, в зависимости от ко-
торой оценивались в 1–3 балла. 

Задачи на 1 балл  
1.1. 22 ноября 1942 г. стала действовать Дорога жизни: на автотранспорте по Ладожскому 

озеру из Кобоны до Кокорева, далее до Ленинграда по железной дороге. От Кобоны до Кокорева по 
карте 7 см. Масштаб карты 1:500000. Определите фактическое расстояние между данными насе-
ленными пунктами. 

Ответ: 35 км. 
1.2. Против танковой дивизии «Адольф Гитлер» были выдвинуты две армии, которые долж-

ны встретиться недалеко от Курска. Армии находились друг от друга на расстоянии 240 км. Ско-
рость движения одной армии 4 км/ч. Найти скорость движения второй армии, если известно, что 
через 2 дня расстояние между ними было 40 км. Учесть, что армии двигались по 10 ч в сутки навс-
тречу друг другу практически по прямой [5]. 

Ответ: 6 км/ч. 
1.3. Максимальная скорость танка Т-34 55 км/ч, а скорость фашистского танка того же класса 

40 км/ч. Успеют ли наши танки захватить переправу через Северный Донец, если по данным раз-
ведки фашистские танки находятся на расстоянии 20 км, а наши – 24 км? При этом нужно учесть, 
что на пути советских танков есть труднопроходимый участок длиной 4 км, который можно пре-
одолеть только со скоростью 30 км/ч [2]. 

Ответ: поскольку время движения наших танков до переправы меньше, чем вражеских, успеют. 
1.4. После боя требуется восстановить цепь из 15 колец, которая оказалась разбита на 5 зве-

ньев по 3 кольца в каждом. Какое наименьшее число колец нужно расковать и сковать, чтобы со-
единить эти звенья в одну цепь? 

Ответ: 3. 
Пример: достаточно расковать 3 кольца из одного звена. Оставшиеся 4 звена соединяем тре-

мя раскованными кольцами. 
Задачи на 2 балла  
2.1. Какое максимальное число экипажей танков Т-26 и Т-34 можно укомплектовать воин-

ским составом из 100 человек (рис. 4)? 
 

 
Рис. 4. Задача про танки 

Ответ: 33. 
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2.2. Необходимо подготовить площадку в виде прямоугольного треугольника площадью 1 кв. 
ед. Уже определена одна из границ площадки длиной 4 ед. Сколько существует вариантов опреде-
ления третьей точки, определяющей две другие границы этой площадки? 

Ответ: 8. 
Задачи на 3 балла  
3.1. Звания героев СССР в годы Великой Отечественной Войны были удостоены 677 воинов 

разных видов войск и различных воинских званий. Известно, что для героев СССР доля младших 
офицеров в ВВС (военно-воздушные силы) больше, чем доля младших офицеров среди всех героев 
СССР. Что больше: доля героев из ВВС среди младших офицеров всех родов войск или доля героев 
из ВВС среди всех героев СССР? 

Ответ: для героев СССР доля младших офицеров ВВС среди младших офицеров всех родов 
войск больше, чем доля героев из ВВС среди всех героев СССР. 

3.2. Высоты данных скульптур (рис. 5) выражаются целыми числами в метрах, для которых 
выполняются следующие соотношения: их НОД равен 5, НОК – 765, а сумма – 130. Найдите высоты 
этих скульптур в метрах.  

 

 
Рис. 5. Сравнение высоты статуй 

 
Ответ: 85 м – высота скульптуры «Родина-мать зовёт!», 45 м – высота статуи Свободы. 
3.3. Два населенных пункта А и В расположены по разные стороны от реки шириной 200 м, 

берега которой параллельны. Длины дорог от каждого пункта до своего берега равны 1,3 км и 
1,7 км соответственно, а расстояние по реке между пунктами – 4 км (рис. 6). Какой будет длина 
кратчайшего пути между населенными пунктами А и В, если построить перпендикулярно берегу 
понтонную переправу через реку?  

 

 
Рис. 6. Путь между двумя населенными пунктами 

 

Ответ: 5200 м. 
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Следующие задачи предлагались уже на другой станции «Комбинаторика и вероятность». 
1. Сколько других четырехзначных чисел можно получить из цифр числа 1945? 
Ответ: 23. 
2. Для Парада Победы в Москве в мае 1945 г. был создан сводный полк, включающий в себя 

шесть рот пехоты, одну роту артиллеристов, одну роту танкистов, одну роту летчиков и одну роту 
сводную (кавалеристы, саперы, связисты).  

Сколькими способами можно выбрать роты для марша, если доступно восемь рот пехоты, три 
танковые роты, две роты летчиков, одна рота артиллеристов и одна сводная? 

Ответ: 168. 
3. В условиях предыдущей задачи какова вероятность для рядового Смирнова из пехотной 

роты принять участие в параде Победы, если в одной роте 100 человек? 
Ответ: 0,75. 
4. На тактической карте отмечено 8 точек так, что никакие три из них не лежат на одной пря-

мой. Сколько можно построить треугольников с вершинами в этих точках? 
Ответ: 56. 
5. Два стрелка производят по одному выстрелу по мишени. Вероятности попадания в цель 

для первого и второго стрелков равны 0,8 и 0,6 соответственно. Какова вероятность того, что в цель 
попадет хотя бы один стрелок? [1]. 

Ответ: 0,92. 
6. Маршал Родион Малиновский составлял на досуге шахматные задачи, участвовал в конкур-

сах и играл на уровне гроссмейстера. Представим себе шахматный турнир между 15 маршалами и 
генералами Советского Союза, в котором каждый из них сыграл только одну партию с каждым из 
остальных. Сколько всего партий было бы сыграно в этом турнире? 

Ответ: 105. 
7. Боевые снаряды в равном количестве хранятся на двух складах. К концу дня один из скла-

дов может опустеть с равной вероятностью 0,4, а вероятность того, что опустеют оба склада, равна 
0,12. Какова вероятность того, что к концу дня снаряды останутся на обоих складах? 

Ответ: 0,32. 
8. Сколькими способами можно прочитать слово «победа», двигаясь вправо или вниз? 
П О Б Е Д А 
О Б Е Д А 
Б Е Д А 
Е Д А 
Д А 
А 
Ответ:      . 
9. В День Победы семья Ивановых пришла поздравить дедушку. В гости пришли сыновья и 

внуки. За столом сидят Сидор Петрович, Петр Сидорович, Иван Сидорович, Сидор Олегович и Иван 
Петрович. Как зовут внуков Ивановых? 

Ответ: Иван и Сидор. 
10. Отряд партизан для конспирации решил присвоить участникам трехзначные числовые 

коды, а, чтобы отличить «своих», число должно иметь четную сумму цифр. Хватит ли таких кодов 
участникам, если к партизанскому отряду примкнуло уже 250 человек? 

Ответ: да.  
На станции «Программирование» студентам предлагалось решить на языках программирова-

ния С++, Python или Pascal (на выбор) ряд текстовых задач, приведенных ниже. Каждая задача име-
ет название, связанное с ее сюжетом. Поскольку автоматическая проверка решений проводится на 
платформе Yandex.Contest, задачи сформулированы с учетом ее требований: дано описание условия 
задачи, формат входных данных и формат выходных данных программ. Для некоторых задач при-
водятся примеры входных данных и соответствующие ответы. 

1. Помогите партизанам. 

Отряд советских партизан направляется для выполнения задания в горной местности. Из-
вестно, что на само задание потребуется а часов. Отряд добирался до места b часов и еще c часов 
возвращался назад, обходя засады противника. Определите, сколько времени потребовалось парти-
занам для выполнения задания. Уложились ли они в сутки? 

Единственная строка содержит три целых числа: a, b, c (0 ≤ a, b, c ≤ 10). 
В первой строке выведите одно число  время, затраченное на задание, во второй – YES, если 

отряду удалось успеть за одни сутки, и NO – в противном случае. 



 
                              Mathematical bulletin of Vyatka State University, Is. 2 (33), 2025                                    

 

27 

2. Сигнал от командования. 
Генеральный штаб Красной армии должен сообщить своему подразделению дату начала 

наступления (в текущем году). Канал связи является ненадежным, чтобы запутать противника, свя-
зист вместо даты в виде день d и месяц m передает разность d  m и разность их квадратов d2  m2. 

Связной роты знает этот алгоритм. Помогите ему расшифровать сигнал от командования и 
узнать дату начала наступления. 

В первой строке записана разность чисел d  m, а во второй строке  разность квадратов чисел 
d2  m2. Гарантируется, что 1 ≤ d ≤ 31 и 1 ≤ m ≤ 12. 

В одной строке выведите два числа d и m (гарантируется, что числа существуют). 
3. Сражение у Калача-на-Дону. 
С 23 июля по 11 августа 1942 г. состоялось сражение у Калача-на-Дону. В результате двухне-

дельных боев в большой излучине Дона между 6-й армией вермахта и силами советского Сталин-
градского фронта части вермахта нанесли поражение 62-й и 64-й армиям РККА, заняли Калач-на-
Дону, переправились через Дон и создали плацдарм на восточном берегу реки, что дало возмож-
ность начать наступление на Сталинград. 

Помогите командованию РККА оценить численность солдат, уцелевших в этом бою.  
В полученной шифровке в первой строке указано натуральное число  количество танковых 

батальонов, отправленных в бой, а затем в каждой i-й строке записано число pi (0 ≤ pi ≤ 100)  веро-
ятность (в процентах) того, что i-й батальон уцелел. Танковый батальон состоит из 135 человек. 

Выведите одно число – количество солдат, уцелевших в сражении (округлить до целого числа). 
Пример: 
4 
50 
20 
30 
15 
Ответ: 155. 
4. Ночные ведьмы. 
46-й гвардейский ночной бомбардировочный авиационный полк, возглавляемый Евдокией 

Бершанской, наводил леденящий ужас на противника. Бесстрашные советские бомбардировщицы, 
самолеты которых не могли обнаружить немецкие радары из-за низкой высоты полета, появлялись 
в небе под покровом ночи, сбрасывали бомбы и вновь исчезали во мраке. 

Одна из летчиц за ночь совершила n вылетов. На каждом вылете i-я бомба была сброшена в 
точку с координатами (xi; yi), а цель имеет координаты (xci; yci) и радиус Ri. Цель считается поражен-
ной, если Ri  di < 0,5 м, где di – расстояние между центром цели и точкой попадания снаряда. 

Найдите процент поражения целей этой летчицей. 
Первая строка содержит натуральное число n – количество вылетов. В следующих n строках 

через пробел записаны координаты удара, координаты цели и ее радиус. 
Выведите число процентов попадания в цель, округленное до целых. 
Пример входных данных: 
3 
4 5 3 5 2 
7 1 6 2 3 
0 0 2 2 1 
Ответ: 75. 
В качестве подсказок на станциях участники получали отдельные слова. Из этих слов нужно 

было составить фразу и определить ее автора. В маршрутных листах было зашифровано высказыва-
ние маршала Советского Союза Г. К. Жукова: «Время не имеет власти над величием всего, что мы пе-
режили в войну, а народ, переживший однажды большие испытания, будет и впредь черпать силы в 
этой победе». Следует отметить, что всем командам удалось выполнить данное задание квеста. 

Методическая ценность проведенного междисциплинарного квеста заключается в интегра-
ции дисциплин (объединение математики, информатики, физики и истории) в рамках единого ме-
роприятия, использовании нестандартной игровой формы для повышения мотивации и вовлечен-
ности студентов в образовательный процесс, укреплении связи с историей Великой Отечественной 
войны и воспитании уважения к прошлому.  

После прохождения станций для участников квеста было организовано студенческое шоу фи-
зического эксперимента. В это время жюри подводило итоги. Команды, набравшие наибольшее ко-
личество баллов на станциях и правильно выполнившие основное задание квеста, были награжде-
ны дипломами I–III степеней и сладкими призами. 
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По окончании мероприятия был проведен опрос участников, показавший высокую степень их 
удовлетворенности как организацией, так и содержанием квеста. Были получены высокие оценки и 
только положительные отзывы. Многие студенты выразили заинтересованность в участии в по-
добных мероприятиях в будущем. 

В работе [4] рекомендованы разные формы патриотической работы: проведение поисковых 
экспедиций (поездки на места сражений); создание и ведение интернет-ресурсов. Безусловно, эти 
мероприятия эффективны, но они, как правило, не связаны с учебным процессом и профессиональ-
ной спецификой подготовки студентов. 

В отличие от них, представленный междисциплинарный квест является удачным примером 
органичного сочетания образовательных и воспитательных задач в рамках учебной деятельности. 
Предложенный формат может быть адаптирован для других вузов и школ. Поскольку использован-
ные задачи не требуют узкоспециальных знаний, они могут быть предложены не только студентам 
младших курсов, но и старшеклассникам. 

Таким образом, квест, интегрирующий знания из профессиональных областей, позволяет в 
игровой и интерактивной форме воспитывать в молодежи чувство патриотизма, уважения к исто-
рии и культуре своей страны, а также развивать осознание своей роли в ее будущем развитии. 
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Abstract. The article presents the experience of organizing and conducting an interdisciplinary quest for 

first- and second-year students of the Faculty of Computer, Physics, and Mathematics, dedicated to the 80th anniver-
sary of Victory in the Great Patriotic War. The focus is on the content of the assignments in mathematics and pro-
gramming. Examples of military-patriotic themed story-based mathematics problems with answers are provided, as 
well as programming problem statements with historical context, adapted for the Yandex.Contest platform. The pro-
posed materials can be used in educational work with both junior and senior students. 
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Аннотация. Одно из наиболее перспективных направлений в технологиях обучения математике – 

внедрение и развитие интерактивных геометрических сред и, как следствие, выявление эффективных путей 
их использования в образовательном процессе. В статье предлагается набор интерактивных чертежей для 
работы с геометрическими задачами. В качестве задач выбраны задачи на построение для 8-го класса повы-
шенного уровня сложности. 
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В условиях цифровизации образования высокую оценку заслужили программные среды, поз-
воляющие создавать динамические чертежи, т. е. компьютерные геометрические чертежи-модели, 
исходные данные которых можно варьировать с сохранением всего алгоритма построения, про-
сматривать их и работать с ними [7].  

Вопросы разработки и использования динамических чертежей находятся на стыке геомет-
рии, компьютерных наук, дидактики и инженерного проектирования. Считается, что теоретические 
и практические основы динамической геометрии заложили Жан-Мари Лаборд (Jean-Marie Laborde) 
во Франции и Николас Джекив (Nicholas Jackiw) в США. Их программы – соответственно Cabri и The 
Geometer’s Sketchpad (GSP) – обеспечили возможность интерактивного изучения геометрии через 
манипуляцию объектами. В настоящее время в школьном обучении наиболее часто для создания 
интерактивных моделей применяются такие специализированные программы и онлайн-сервисы, 
как GeoGebra, «Живая геометрия», «1С: Математический конструктор» [13–15].  

Остановимся отдельно на GeoGebra. Это свободно распространяемая среда, которая дает воз-
можность создания новых инструментов, органически сочетается с интерактивной доской и суще-
ственно расширяет диапазон ее применения. Подробно с возможностями GeoGebra и опытом при-
менения ее в учебном процессе можно ознакомиться в публикациях [5, 6, 12]. 

К преимуществам применения интерактивных моделей в обучении современные исследова-
тели относят:  

– Скорость применения. Обучение с применением интерактивных моделей позволяет быст-
рее и эффективнее научить тем или иным практическим и теоретическим навыкам. 

– Актуальность. Технологии, в том числе и образовательные, в современном мире развивают-
ся и меняются очень быстро. Поэтому учащимся и учителям, использующим интерактивные моде-
ли, удастся достойно соответствовать реальным требованиям обучения и общества. 

– Точность и контроль. Использование интерактивных моделей в процессе обучения дает воз-
можность контролировать процесс обучения, наблюдать за действиями учащихся и корректировать 
их, следить за их успеваемостью и потенциалом. 

– Вовлеченность в процесс обучения. Происходит усиление интерактивности, а следователь-
но, и увеличение уровня мотивации, эмоциональное вовлечение в процесс обучения благоприятно 
влияет на уровень усвоения и запоминания материала.  

– Возможность каждому ученику стать непосредственным участником учебного процесса. 
Каждый ученик видит результат своего труда, может проанализировать допущенные ошибки, сде-
лать выводы и обобщить полученные знания и умения [2, 9]. 
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Также отмечаются и недостатки: риск поверхностного восприятия, подмена цели, цифровое 
неравенство. 

В рамках проведенного исследования была разработана коллекция интерактивных чертежей-
моделей для методического сопровождения решения геометрических задач на построение повы-
шенной сложности главы «Многоугольники. Четырехугольники» учебника: Мерзляк А. Г. Геомет-
рия. 8 класс: углубленный уровень [10]. 

Интерактивные чертежи-модели разрабатывались к задачам: 
1. На сторонах АВ и ВС треугольника АВС постройте соответственно такие точки М и К, чтобы 

АМ = ВК, МК || АС. 
2. Даны пересекающиеся прямые и точка, не лежащая на этих прямых. Постройте отрезок с 

концами на данных прямых и серединой в данной точке. 
3 Точки M, N и K соответственно середины равных сторон АВ, ВС и CD четырехугольника ABCD. 

Постройте по этим точкам четырехугольник ABCD. 
4. Даны точки А, С и М. Постройте ромб ABCD, если известно расстояние от точки М до точки 

N – середины стороны ВС. 
5. Продолжение медианы АМ треугольника АВС пересекает его описанную окружность в точке 

D. Постройте треугольник АВС по заданным точкам А, В и D. 
Дадим небольшой комментарий к рассматриваемым задачам. С точки зрения методики рабо-

ты с задачей на построение процесс ее решения разбивают на этапы: анализ, построение, доказа-
тельство и исследование.  

Исследование является завершающим этапом решения задачи и имеет целью установить 
условия разрешимости и определить число решений, т. е. необходимо ответить на следующие во-
просы:  

1) При любых ли допустимых значениях исходных данных задача имеет решение?  
2) Сколько различных решений может быть получено при заданных условиях [4]? 
На этом этапе видно явное преимущество динамических чертежей. Они предоставляют воз-

можность варьировать элементы геометрической конфигурации и мгновенно видеть результат.  
В качестве платформы для создания интерактивных чертежей-моделей была выбрана Geo-

Gebra. В контексте школьной геометрии особенно ценно, что она дает возможность: создавать точ-
ные динамические чертежи, отражающие ход построения; исследовать свойства геометрических 
объектов путем манипуляции и наблюдения; осуществлять доказательства с помощью построения; 
встраивать текстовые комментарии, вопросы, гипотезы и пояснения в рабочие области. Все пере-
численное делает возможным создать наглядные и интерактивные чертежи. 

Представленные чертежи-модели по характеру активности при взаимодействии с пользова-
телем имеют различный уровень интерактивности:  

– условно-пассивный уровень характеризуется отсутствием взаимодействия пользователя с 
контентом, при этом контент имеет неизменный вид в процессе использования; 

– активный уровень характеризуется простым взаимодействием пользователя с контентом 
на уровне элементарных операций с его составляющими (элементами); 

– деятельностный уровень характеризуется конструктивным взаимодействием пользователя 
с элементами контента; 

– исследовательский уровень ориентируется не на изучение предложенных событий, а на 
производство собственных событий [11]. 

Подготовленная коллекция интерактивных чертежей-моделей размещается на сайте програм-
мы GeoGebra и представляет собой GeoGebra-книгу «Занимательные задачи на построение» [8]. 
Структурно книга состоит из отдельных интерактивных рабочих страниц. Интерактивная страница – 
это документ, который содержит материалы для работы с одной задачей на построение. В нем при-
сутствуют шесть рабочих областей, каждая из которых соответствует определенному этапу решения 
задачи. Некоторые из этих областей являются интерактивными полями и содержат динамические 
чертежи.  

Интерфейс книги понятен. Главное меню позволяет переходить к отдельным страницам 
книги. Управление в каждой рабочей области осуществляется с помощью стандартных инстр у-
ментов GeoGebra. Все элементы снабжены поясняющими подписями. Присутствуют функции 
сброса конструкции, панорамирования и масштабирования; доступ к меню и панели инстру-
ментов, кнопка проигрывания шагов построения, что позволяет контролировать этапность вы-
полнения задания.  

Продемонстрируем в виде рисунков рабочие области одной интерактивной страницы. Они 
соответствуют шести этапам решения задачи на построение. 
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1-й этап. Формулировка задачи. В верхней части страницы размещается условие задачи (рис. 1). 
 

 
Рис. 1. Рабочая область первого этапа 

 
На этом этапе осуществляется чтение текста с последующим обсуждением, что соответствует 

условно-пассивной форме интерактивности. 
2-й этап. Пробное построение. Пользователю предлагается самостоятельно (без подсказок) 

выполнить построение, используя набор инструментов GeoGebra (рис. 2). 
 

 
Рис. 2. Рабочая область второго этапа 

 
На этом этапе осуществляется: 
– введение/удаление объектов; 
– перемещение объектов; 
– масштабирование объектов для детального изучения; 
– изменение параметров объектов. 
Перечисленные взаимодействия пользователя с элементами чертежа соответствуют дея-

тельностной или исследовательской форме интерактивности. 
3-й этап. Анализ задачи. Представлен краткий текст анализа, в котором пошагово разбирает-

ся условие задачи: какие элементы заданы, как они между собой связаны, какие геометрические 
свойства фигур можно применить (рис. 3). При этом каждый шаг анализа подтверждается нагляд-
ным построением. 

 

 
Рис. 3. Рабочая область третьего этапа 
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На этом этапе осуществляется: 
– чтение текста, в том числе с управлением его движения в окне представления («листание» 

страниц, скроллинг); 
– просмотр динамических изображений; 
– частичное перемещение объектов; 
– масштабирование объектов для детального изучения. 
Перечисленные взаимодействия пользователя с элементами чертежа соответствуют условно-

пассивной форме интерактивности. 
4-й этап. Динамическое построение. Пошагово визуализируется каждый этап решения задачи 

с пояснениями (рис. 4). 
 

 
Рис. 4. Рабочая область четвертого этапа 

 
На этом этапе осуществляется: 
– чтение текста, в том числе с управлением его движения в окне представления («листание» 

страниц, скроллинг); 
– просмотр динамических изображений; 
– перемещение объектов; 
– масштабирование объектов для детального изучения. 
Перечисленные взаимодействия пользователя с элементами чертежа соответствуют условно-

пассивной форме и частично активной форме интерактивности. 
5-й этап. Доказательство. На этом этапе устанавливается, удовлетворяет ли представленное 

построение всем условиям задачи (рис. 5). 
 

 
Рис. 5. Рабочая область пятого этапа 
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Рис. 5.1. Рабочая область пятого этапа 

 
К основному способу взаимодействия на данном этапе можно отнести чтение текста. Однако 

в некоторых задачах можно отметить: просмотр динамических изображений; перемещение объек-
тов; масштабирование объектов для детального изучения (рис. 5.1). 

Перечисленные взаимодействия соответствуют условно-пассивной форме и активной форме 
интерактивности. 

6-й этап. Исследование. На этом этапе пользователю предлагается выяснить, всегда ли можно 
выполнить построение, сколько решений имеет задача при всех возможных данных (рис. 6). Осуще-
ствить это можно за счет перемещения исходных данных на этапе построения. 

 

 
Рис. 6. Рабочая область шестого этапа 

 
Сам этап исследования представлен в условно-пассивной форме интерактивности, однако его 

осуществление зависит от работы на этапе построения. Поэтому, в совокупности, данному этапу при-
суща активная форма интерактивности. 

На наш взгляд, динамические чертежи трансформируют абстрактные геометрические факты 
в визуальные, интерактивные модели, что способствует более глубокому и осознанному усвоению 
материала. Смена уровней интерактивности на каждом этапе решения задач на построение способ-
ствует поддержанию вовлеченности пользователей (учащихся) в обсуждение проблем. Разработан-
ные интерактивные модели могут эффективно использовать: учащиеся для самостоятельного изу-
чения материала, студенты и учителя в образовательном процессе.  
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Abstract. The implementation and development of interactive geometric environments is one of the most 

promising areas in mathematics teaching technologies. Consequently, identifying effective ways to use them in the ed-
ucational process is important. This article proposes a set of interactive drawings for working with geometric prob-
lems. The problems selected are advanced construction problems for 8th grade. 
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Аннотация. В статье предложены четыре доказательства дистрибутивности бинарных операций взя-
тия НОД и НОК относительно друг друга на множестве целых чисел Z. Два доказательства опираются на свой-
ства делимости, свойства простых чисел и взаимно простых чисел. На языке теории решеток обоснована дис-
трибутивность решетки натуральных чисел относительно отношения «делит». Четвертое доказательство ис-
пользует изоморфизм решетки всех натуральных делителей натурального числа п и решетки всех подгрупп 
циклической группы п-го порядка. 

 
Ключевые слова: теория чисел, решетка, циклическая группа, дистрибутивность, НОД, НОК.  
 
1. Доказательство № 1, опирающееся на свойства НОД и НОК. 
Введем необходимые определения и утверждения. Отношение делит | определяется условием  

b | a   c Z: a = bc. 
Число b называется делителем a (a делится на b), число a – кратным b.  
Наибольшим общим делителем (НОД) множества целых чисел {a1, …, an}, среди которых есть 

ненулевое число, называется их наибольший общий делитель, обозначаемый (a1, …, an). Считаем, 
что (0, …, 0) = 0. Наименьшее общее кратное (НОК) [a1, …, an] множества ненулевых целых чисел – это 
их наименьшее натуральное общее кратное. Считаем, что [0, a1, …, an] = 0.  

Будем обозначать множество всех общих делителей (кратных) чисел a1, …, an как D(a1, …, an) 
(соответственно, M(a1, …, an)). 

Следующие свойства выполняются для любых целых чисел, классические доказательства 
большинства из них можно найти в источниках [2, 6, 9]: 

С1. Отношение делит | рефлексивно (a | a) и транзитивно (b | a & a | c b | c). 
Доказательство. Действительно, a = a 1   a|a. Кроме того, b|a & a|c z, h Z (a = bz, c = ah) c = 

b(zh) b|c.  
С2. b | a & a 0 |b| |a|. В частности, b | 1 b =  1. 
Доказательство. Имеем: b|a c Z (a = bc) |a| = |bc| = |b| |c|. Так как a 0, то |c| 1. Тогда |a| |b|. В 

частности, b|1   b 0 & 1 |b| b =  1. Очевидно,     .  
С3. Имеют место характеристические свойства НОД и НОК: 
·  d = (a1, …, an) d N0 делит числа a1, …, an, и d делится на любой их общий делитель. 
·  |m| = [a1, …, an] m N0 делится на числа a1, …, an, и делит любое их общее кратное. 
Доказательство. Пусть n = 2. Разложение НОД (a, b) = a  +b  , где   ,    Z, получим, напри-

мер, по алгоритму Евклида. Поэтому (a, b) делится на любой z D(a, b). Пусть общий делитель d N0 
чисел a и b делится на любой их общий делитель. Если d = 0, то a = b = 0 = (a, b). Если d 0, то по 
свойству C2 d – наибольший из всех общих делителей a и b, то есть d = (a, b).  

Второе утверждение доказывается аналогично. 
Пусть n > 2. Множество общих делителей чисел a1, …, an+1, совпадает с множеством общих де-

лителей чисел (a1, …, an) и an+1. Получаем цепочку эквивалентных условий: 
[  D(a1, …, an+1) делится на любой общий делитель чисел a1, …, an+1] [  D((a1, …, an), an+1) де-

лится на любой общий делитель (a1, …, an) и an+1] |d| = ((a1, …, an), an+1)   |d| = (a1, …, an, an+1). 
      

С4. (a, b) = 1 a  +b   = 1 для некоторых   ,    Z. 
Доказательство. Прямое утверждение следует из алгоритма Евклида: 1 = (a, b) = a  +b  . 

Пусть теперь a  +b   = 1 для   ,    Z, тогда любой общий делитель d чисел a и b делит и 1, то есть 
d =  1 и (a, b) = 1.      

С5. (a, b) = 1 ((a, c), (b, c)) = 1. 
Доказательство. Так как (a, b) = 1 и (b, c) | b, (a, c) | a, то по С4 1 = a  +b   = (a, c)    +(b, c)     

для   ,   ,   ,    Z, поэтому ((a, c), (b, c)) = 1.  
С6. Пусть a 0, b 0 и d > 0. Тогда (a, b) = d(a/d, b/d) и [(a, b) = d (a/d, b/d) = 1]. 
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Доказательство. В силу разложения НОД в алгоритме Евклида для положительного общего 
делителя d чисел a и b имеем: (a, b) = d(a/d, b/d). 

Если (a/d, b/d) = 1, то (a, b) = d (a/d, b/d) = d. 
Если d = (a, b) для a 0, b 0, то, поделив на d 0 равенство d = az1+bz2,   ,    Z, получим 1 = 

az1/d+bz2/d. По C4 (a/d, b/d) = 1.        
С7. (a, b) = 1 & c | a (c, b) = 1.  
Доказательство. Так как c | a, то по С1 делители числа c делят a. Тогда в силу С3 (c, b) | (a, b) = 

1. Итак, по С2 (c, b) = 1.        
С8. (a, b) = 1 (ca, b) = (c, b). 
Доказательство. По свойству C1 D(c, b) D(ca, b).  

Для d D(ca, b) в силу (a, b) = 1 имеем                           для целых            Тогда 

                и d|c, то есть d D(c, b). Поэтому D(ca, b)  D(c, b). Значит, D(c, b) = D(ca, b) и (c, b) = 
(ca, b).     

С9. (a, b) = 1 (c, ab) = (c, a)(c, b). 
Доказательство. Если b = c = 0, то по условию a = 1, поэтому (0, 1 0) = (0, 1)(0, 0).  

Если b 0 или c 0, то по С6 (
 

     
, 

 

     
) = 1. Так как (b, a) = 1 и (c, b) | b, то по С7 ((c, b), a) = 1 и по 

С8 (
  

     
, 

 

     
) = (a, 

 

     
) = (a, 

      

     
) = (a, c). Тогда в силу С6 получим, что (ab, c) = (c, b)(a, c).  

С10. [a, b] = в случае, когда a 0 или b 0. 
Доказательство. Если a = 0, то [0, b] = 0 = 0/(0, b). Случай b = 0 аналогичен.  
Пусть a 0 и b 0. Обозначим d = (a, b)  0. Тогда по C6 числа a1 = a/d и b1 = b/d взаимно просты. 

Нужно показать, что [a, b] = |a1b1| d. 
Для любого m M(a, b) имеем: m = az1 = bz2 (  ,    Z) m = a1dz1 = b1dz2   a1z1 = b1z2. Так как (a1, 

b1) = 1, то b1 | z1, то есть z1 = b1z для z Z и m = a1b1dz. Значит, M(a, b) {a1b1dz | z Z}. 
Поскольку по всем z Z числа a1b1dz кратны и a, и b, то M(a, b) = {a1b1dz | z Z}. 
Так как a1b1d 0, то наименьшим натуральным числом в M(a, b) будет |a1b1| d (для него z = 

sgn(a1b1)). Значит, [a, b] = |a1b1| d и [a, b] = |ab|/(a, b).   
Опираясь на указанные свойства, докажем законы дистрибутивности бинарных операций 

взятия НОД и НОК относительно друг друга. 
Теорема 1. На множестве целых чисел Z верны тождества: 

(a, [b, c]) = [(a, b), (a, c)] и [a, (b, c)] = ([a, b], [a, c]). 
Доказательство. Если b = c = 0, то (0, [0, 0]) = 0 = [(0, 0), (0, 0)].  

Пусть b 0 или c 0. Обозначим: d = (a, (b, c)),       
 

 
,       

     

 
,       

 

     
, 

      
 

     
. Тогда                                              

  , d     = b, d     = c и 

            
    

     
      

         
  

     
             

 

     
 

 

     
    

                              
                 

               
          

 {
                 
                      

   {
                  
                       

     {
            
            

. 

Преобразуем: 
                                                          

      
                                         

                                           . 

Значит,             
           

(           )
              

     

   
. 

Доказательство равенства [a, (b, c)] = ([a, b], [a, c]) проводится аналогично.    
 
Как следствие получаем следующее свойство  
С11. Для ненулевых чисел верны равенства 

[a, b, c] = и (a, b, c) = 
            

               
. 

Доказательство. Будем использовать обозначения и результаты доказательства законов 
дистрибутивности, в том числе равенство (a, [b, c]) = =                    : 

[a, b, c] = [a, [b, c]] = = = 

= = 
            

               
. 

2. Доказательство № 2, использующее основную теорему арифметики. 
Второе доказательство законов дистрибутивности опирается на понятие простого числа и 

основную теорему арифметики.  
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Натуральное число p называется простым, если оно имеет только два натуральных делителя 
1 p. Порядок Op(n) вхождения простого числа p в разложение натурального числа n 1 – такое 
наибольшее неотрицательное число s, что | n: 

s = Op(n) | n & |  n. 

Имеем: Op(nm) = Op(n)+Op(m) и m | n Op(n/m) = Op(n) – Op(m). 
Основная теорема арифметики [6]. Любое натуральное число, большее 1, представляется в 

виде произведения простых чисел, причем однозначно с точностью до порядка следования множи-
телей. 

Основная теорема арифметики может быть сформулирована следующим образом: любое 

натуральное число n 1 представимо в виде произведения степеней 
)(nOpp  по всем простым p: n = 


прост. ­ 

)(

p

nOpp . Для числа 1 имеем аналогичное разложение 1 = 
пост. ­ 

0

p
p .  

С12. Для любых натуральных чисел a1, ..., an: 

(a1, ..., an) = 
прост. ­ 

))(),...,(min( 1

p

aOaO nppp  и [a1, ..., an] = 
прост. ­ 

))(),...,(max( 1

p

aOaO nppp . 

Доказательство. Достаточно обосновать случай n = 2. Правые части указанных формул зада-
ют общий делитель d и общее кратное m чисел a и b. По свойству С3 имеем: (a, b) = dg и m = [a, b]q. 
В силу основной теоремы арифметики невозможно добавить простых множителей к d, чтобы полу-
чить новый общий делитель, то (a, b) = d. Так как нельзя убрать простые множители из разложения 
m, чтобы получить новое общее кратное, то [a, b] = m.     

 Получаем следующее: 
Доказательство теоремы 1. Заметим, что достаточно обосновать тождества дистрибутивно-

сти на множестве N, поскольку НОД и НОК не зависят от знаков аргументов, а при наличии хотя бы 
одного нулевого числа проверяются непосредственно с учетом равенств (0, z) = z и [0, z] = 0:  

·  a = 0 (0, [b, c]) = [b, c] = [(0, b), (0, c)] и [0, (b, c)]) = 0 = ([0, b], [0, c]). 
·  b = 0 (a, [0, c]) = a = [(a, 0), (a, c)] и [a, (0, c)] = [a, c] = ([a, 0], [a, c]). 
·  c = 0  (a, [b, 0]) = a = [(a, b), (a, 0)] и [a, (b, 0)] = [a, b] = ([a, b], [a, 0]).  
Пусть a, b, c положительны. Зафиксируем произвольное простое число p. Обозначим n = (a, [b, 

c]), m = [(a, b), (a, c)], x = Op(a), y = Op(b), z = Op(c). В силу С12 
Op(n) = min(Op(a), Op([b, c])) = min(Op(a), max(Op(b), Op(c))) и Op(m) = max(min(Op(a), Op(b)), min(Op(a), 

Op(c))). 

Тогда Op(n) = min(x, max(y, z))
)1(
 max(min(x, y), min(x, z)) = Op(n) n = m. При этом тождество (1) 

верно для любых x, y, zR, а для его проверки достаточно рассмотреть следующие случаи, обозна-
чив A = min(y, z) и B = max(y, z): 

 

 
Рис. 1. Проверка тождества 

 
Доказательство дистрибутивного закона [a, (b, c)] = ([a, b], [a, c]) опирается на тождество  

max(x, min(y, z)) = min(max(x, y), max(x, z)), 
которое получается из тождества (1) взаимной заменой max и min (то есть направления чис-

ловой оси) и верно в силу аналогичных рассуждений.    
 Как и в предыдущем пункте, приведенную методику доказательства можно перенести на 

доказательство свойства C11. 
Доказательство C11. В силу условия числа [a, b, c] и натуральные.  
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Зафиксируем произвольное простое число p. Обозначим n = [a, b, c] и m = 
          

               
, x = 

Op(a), y = Op(b), z = Op(c). По свойству С11 получаем:  
Op(n) = max(Op(a), Op(b), Op(c)), 

 Op(m) = Op(a)+Op(b)+Op(c)+Op((a,b,c))–Op((a,b))–Op((a,c))–Op((b,c)) =  
Op(a)+Op(b)+Op(c)+min(Op(a),Op(a),Op(c))– 

min(Op(a),Op(a))–min(Op(a),Op(c))–min(Op(b),Op(c)). 

Тогда Op(m) = x+y+z+min(x, y, z)–(min(x, y)+min(x, z)+min(y, z)
)2(
 max(x, y, z) = Op(n), и, значит, n = 

m. Для обоснования равенства (2) воспользуемся иллюстрацией: 
 

 
Рис. 2. Обоснование равенства  

 
Доказательство второго тождества получается из предыдущего взаимной заменой НОД и НОК 

и опирается на тождество, двойственное (2): 
 x+y+z+max(x, y, z)–(max(x, y)+max(x, z)+max(y, z)) = min(x, y, z). □ 

Замечание. Отношение делимости можно определить в любой полугруппе, а законы дистри-
бутивности для НОД и НОК будут верны в любой арифметической полугруппе (см. [5]). Дадим соот-
ветствующие определения. 

Непустое множество G с определенной на нем ассоциативной операцией   ( a,b,c G: (ab)c = 

a(bc)) называется полугруппой. Тогда запись b|a означает, что a = bc для некоторого c G. НОД сово-
купности элементов полугруппы G можно определить как такой их общий делитель, который де-
лится на любой общий делитель этих элементов. 

Полугруппа G,   с коммутативной и сократимой операцией ( a,b   G: ab = ba и если ac = 
bc, то a = b) называется арифметической, если содержит единственный обратимый элемент 1 

(     G: 1a = a и если ab = 1, то a = 1) и ее любые два элемента имеют в ней НОД. 

Очевидно, что N,   и Z,   – примеры арифметических полугрупп. 
3. Доказательство № 3, использующее признак дистрибутивности решетки. 
Введем необходимые определения и утверждения (см. также [4, 7]). 

Множество A называется упорядоченным, если на нем введено отношение порядка  , то есть 

бинарное отношение, обладающее свойствами рефлексивности ( a A: a a), антисимметричности 

(a b & b a a = b) и транзитивности (a b & b c a c). 

Если a b и a≠b, будем писать a b. 
В силу свойств С1 и С2 на множестве натуральных чисел N отношение делит | является отно-

шением порядка, то есть <N, | > – упорядоченное множество. 

Элемент e упорядоченного множества <A,   > называется: 

·  наименьшим (наибольшим), если  a A: e a (a e); 

·  минимальным (максимальным), если в A нет такого a, что a e (e a); 

·  последующим для a A (тогда a – предыдущий для e), если a e и при этом  

a x e x {a, e}. 

Конечные упорядоченные множества <A,   > возможно изобразить диаграммой Хассе, кото-
рая строится по следующему алгоритму: 

·  множество A1 всех минимальных элементов в A отмечаем точками 1-го горизонтального 
уровня; 

·  множество A2 всех минимальных элементов в A \ A1 – точками 2-го; 

·  по множеству A \ (A1 A2) получаем точки 3-го уровня 
и так далее, пока не переберем все элементы; 
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·  соединяем отрезком точки x и y, если y – последующий элемент для x.  
Аналогично можно строить фрагменты диаграммы Хассе для бесконечного множества. 

Например, для <N, | > , ограничившись только числами 2, 3, 5, 7, 11 второго уровня, получим: 

 
Рис. 3. Построение фрагмента диаграммы Хассе 

 

Элемент e упорядоченного множества <A,   > называется: 

·  нижней (верхней) гранью для MA, если m M: e m (m e); 

·  точной нижней (точной верхней) гранью множества M A, если e – наибольший (наимень-

ший) из всех нижних (верхних) граней для M. 
На основании свойства С3 получаем, что в <N, | > точной нижней гранью любого конечного 

множества чисел будет их НОД, а точной верхней гранью – их НОК.  
Упорядоченное множество, в котором любые два элемента имеют точные нижнюю и верх-

нюю грани, называется решеткой. Получаем, что <N, | > – решетка.  
Подмножество решетки L, замкнутое относительно взятия точной нижней грани и точной 

верхней грани, называется ее подрешеткой. 

Для решетки <L,   > взятие точной верхней и точной нижней граней будем рассматривать 

как операции сложения + и умножения ·. Оперируя ими, определим отношение  : a b   a+b =  
b (  ab = a).  

Имеет место следующее свойство 
С 13. В решетке L, , +,  верны следующие свойства (a, b, c, d  L):  
1) a + a = a, aa = a (идемпотентность);  
2) a + b = b + a, ab = ba; 
3) a  a + b, ab  a;  
4) a + ab = a, a(a + b) = a (законы поглощения); 
5) (a + b) + c = a + (b + c), (ab)c = a(bc); 
6) a  c  b  d  a + b  c + d  ab  cd.  
Доказательство. Тождества 1) и 2) сразу следуют из определения операций сложения и умно-

жения в решетке L, . Соотношения 3) и 4) вытекают из определений точных граней множества. 
Докажем равенство 5). Пусть a, b, c – произвольные элементы решетки L. Покажем, что (a + 

b) + c = sup {a, b, с}. Обозначим a + b = d. Имеем: c  d + c, a  d, b  d. Так как d  d + c, то a  d + c, b  d + 
c. Значит, d + c – верхняя грань множества {a, b, с}. Пусть х – произвольная верхняя грань множества 
{a, b, с}. Тогда a  x, b  x, c  x, то есть х – верхняя грань для а и b, поэтому d = a + b  x. Учитывая не-
равенство c  x, получаем d + c  x. Отсюда следует, что d + c – точная верхняя грань для {a, b, с}. Зна-
чит, (a + b) + c = sup {a, b, с}. 

Аналогично, a + (b + c) = sup {a, b, с} = (a + b) + c и a(bc) = inf{a, b, с} = (ab)c . 
Докажем 6). Пусть верны посылки утверждения. Тогда a  c  c + d и b  d  c + d. Получаем, что 

a + b  c + d. Так как ab  a  c и ab  b  d, то имеем неравенство ab  cd.     
      □ 
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В любой решетке верны соотношения: ab a, ab ab + c, c ab + c, а потому ab a(ab + c), 

ac a(ab + c) и ab + ac a(ab + c). Кроме того, если a b, то ab   a и ab + ac   a + ac       a(a + c)  
 a(ab + c). Решетка <L, + , · > называется модулярной, если верно тождество a(ab + c) = ab + ac.  

Модулярность решетки L равносильна выполнению условия: a, b, cL (b<aa(b + c) = ab + 

ac). Действительно, если данное условие выполнено, то, обозначив ab   m a, получим ab + ac  

 am + ac   a(m + c)   a(ab + c).  
В любой решетке ab a(b + c), ac a(b + c), и потому ab + ac a(b + c). Решетка <L, + , · > называ-

ется дистрибутивной, если умножение дистрибутивно относительно сложения: a(b + c) = ab + ac. В 
силу определения любая дистрибутивная решетка модулярна. 

Подробнее свойства решеток приведены в [7]. Имеет место следующий признак дистрибу-
тивности решетки: 

Теорема 2. Если для любых элементов a, b, c решетки <L, + , · > верна импликация 
a + b = a + с & ab = ac b = c, 

то она дистрибутивна. 
Доказательство. Предположим, что L не модулярна. Тогда найдутся такие b < a, что a(b + 

c)≠ab + ac, точнее, a(b + c) > ab + ac. Обозначим x = a(b + c) и y = ab + ac = b + ac. Так как x > y, то x + 
с y + с и xс yс.  

Рассмотрим элементы x + c = a(b + c) + c, y + c = b + ac + c = b + c, xc = a(b + c)c = ac, yc = (b + ac)c. 
Поскольку (b + c)ab + c, cb + c, то x + с = a(b + c) + cb + c = y + c. Поскольку acb + ac, acc, то xc = 

ac(b + ac)c = yc. Итак, x + с   y + с и xс   yс. Значит, х = у – противоречие. Следовательно, решетка L 
модулярна. 

Возьмем произвольные x, y, z из L. В модулярной решетке имеем x(y + z) = x(x + z)(y + z) = x(x + 
y)(x + z)(y + z) и xy + xz = xy + xz + xyz = x(xy + xz + yz). 

Для элементов a = x(y + z) + yz, b = y(x + z) + xz, c = z(x + y) + xy имеем: 
a + c = x(y + z) + yz + z(x + y) + xy = x(xy + y + z) + z(yz + x + y) = x(y + z) + z(x + y) =  

 = x(x + y)(y + z) + z(x + y) = (x + y)(x(x + y)(y + z) + z) = (x + y)(x(y + z) + z) =  
 = (x + y)(x(y + z) + z(y + z)) = (x + y)(y + z)(x + z(y + z)) = (x + y)(y + z)(x + z). 

Получили симметричное относительно х, у, z выражение (терм). Так как каждый из трех тер-
мов, задающих элементы a, b, c, получается из какого-то другого терма взаимной заменой двух пе-
ременных, то верны равенства: a + c = b + c = a + b = (x + y)(y + z)(x + z).  

 Аналогично: 
ac = (x(y + z) + yz)(z(x + y) + xy) = (x(y + z) + yz(y + z))(z(x + y) + xy(x + y)) =  

(y + z)(x + yz(y + z))(y + x)(z + xy(x + y)) =  
(y + z + xy)(x + yz)(y + x + yz)(z + xy) = (x + yz)(z + xy) = (x + yz)(z + xy(x + yz)) =  

(x + yz)z + xy(x + yz) = xz + yz + xy. 
В силу симметричности полученного выражения имеем ac = bc = ab = xy + xz + yz.  
Итак, a + c = b + c & ac = bc   a = b.  
Значит, x(y + z) = x(x + y)(x + z)(y + z) = x(a + b) = xa = xab = x(xy + xz + yz) = xy + xz. Тогда решетка 

<L, + , · > дистрибутивна.        □ 
В силу С10 из равенств [a, b] = [a, с] и (a, b) = (a, c) следует, что ab = ac, что влечет b = c. Тогда по 

теореме 2 получаем 
Следствие. Решетка <N, | > дистрибутивна. 
В силу определения дистрибутивность решетки <N, | > равнозначна законам дистрибутивно-

сти в N: 
(a, [b, c]) = [(a, b), (a, c)] и [a, (b, c)] = ([a, b], [a, c]). 

Значит, законы дистрибутивности верны в Z. 
4. Доказательство № 4, использующее изоморфизм решеток. 
Для произвольного натурального числа n обозначим через D(n) множество всех его натураль-

ных делителей. Упорядоченные множества <D(n), | > есть подрешетки решетки <N, | > .  
Упорядоченные множества <A,   > и <B,   > называются изоморфными, если существует би-

екция f: A→B, сохраняющая порядок:  
a b f(a) f(b) для a, b A. 

Изоморфные упорядоченные множества имеют одни и те же порядковые свойства. В частно-
сти, решетка, изоморфная дистрибутивной решетке, также дистрибутивна. 

Покажем, что решетка <D(n), | > изоморфна решетке подгрупп произвольной циклической 
группы n-го порядка. Начнем с необходимой терминологии. 

Полугруппа <G, · > называется группой, если G содержит нейтральный элемент 1 ( a G: a1 = 
a = 1a) и с каждым элементом a содержит симметричный к нему a-1 (aa-1 = 1 = a-1a). Непустое под-



 
                              Mathematical bulletin of Vyatka State University, Is. 2 (33), 2025                                    

 

43 

множество H группы G называется ее подгруппой, если оно само является группой относительно 
операции в G.  

В качестве пособий по основам теории групп предложим источники [3, 5, 8]. 
Количество элементов конечной группы называется ее порядком. Очевидно, порядок под-

группы конечной группы конечен. 
Рассмотрим упорядоченное множество <L,   > всех подгрупп группы <G, · > , упорядоченное 

отношением включения. Данная структура изучается в источниках [1, 10, 11]. 
Подгруппой, порожденной подмножеством M группы G, называется пересечение всех под-

групп G, содержащих M. При этом множество M называется порождающим.  
Получаем, что в <L,   > точной нижней гранью семейства подгрупп является их пересечение, 

а точной верхней гранью – подгруппа, порожденная объединением этого семейства. Итак, <L,   > – 

решетка. 
В группе <G, · > произвольным элементом g G порождается циклическая подгруппа (g) = {gz: z Z}. 
Порядком элемента x группы <G, · > называется наименьшее натуральное число n, для кото-

рого xn = 1. Если такого числа n нет, то говорят, что x имеет бесконечный порядок.  
Далее будем опираться на следующие свойства, доказательства которых можно найти в [3]: 
С14. В произвольной группе <G, · > для любого элемента порядка n и произвольных целых чисел 

k1, k2 имеем: n | (k1–k2). 
Доказательство. Обозначим через rn(k) остаток от деления k Z на n N. Тогда для любой сте-

пени k имеем:  k = для q Z, 0 rn(k)<n. Тогда                  = 1                       

                 –      
С15. Порядок элемента конечной группы конечен. Для любой циклической подгруппы с образу-

ющим a порядка n имеем: ( ) = {1,  , …,  n-1}. 
Доказательство. Первое утверждение очевидно. 
Для любой степени k Z элемента порядка n имеем:  k =       . Поэтому ( ) = { 0 = 1,  1 =  , …, 

 n-1} содержит не более n элементов. 
Если  i =  j для 0 i<j<n, то  j–i = 1, n > j–i N, что невыполнимо для элемента порядка n. Значит, 

степени  0,  1, …,  n-1 различны.         
С16. Для циклической группы G n-го порядка: 
1) любая ее подгруппа является циклической, ее порядок делит n; 
2) для любого делителя d числа n существует единственная подгруппа в G порядка d.  
Доказательство. 1) Для циклической группы ( ) возьмем произвольную подгруппу H, отлич-

ную от циклической подгруппы {1}. Обозначим m = min{n N | 1  n H}. Имеем: ( m) H.  
Для произвольного элемента h H ( ) получаем, что h =  z, z Z. Поделим z на m 0 с остатком: 

z = mq + r, q, r Z, 0 r<m. Тогда h =  z = ( m)q r, а  r = h(( m)q)–1 H и  r = 1 в силу минимальности по-
казателя m, для которого 1  m H. Значит, h = ( m)q и H ( m). Итак, H = ( m).  

По следствию теоремы Лагранжа порядок d элемента  m делит n. Итак, |H| = d, то есть H = {1, 
 m, …, ( m)d–1}.  

2) Для делителя d числа n обозначим m = n/d. Тогда циклическая подгруппа ( m) = {1 =  0m,  m, …, 
 (d–1)m} ( ) содержит d элементов, поскольку для показателей указанных степеней  im выполняется 
ограничение:  

0 im (d–1)m<dm = n. 
Пусть n = dm и подгруппа H ( ) содержит d элементов. Имеем: H = ( k). Порядок  k равен d, и, 

значит, 1 = ( k)d =  kd. Тогда n | kd, то есть kd = nz = dmz, z Z. Получаем, что k = mz и  k = ( m)z ( m). 
Значит, ( k)  ( m), что возможно только при ( k) = ( m) (в силу равенства числа элементов этих 
подгрупп), то есть в ( ) подгруппа порядка d единственна. 

Имеет место следующая: 
Теорема 3. Решетка <D(n), | > всех натуральных делителей натурального числа n изоморфна 

решетке <L,   > всех подгрупп циклической группы n-го порядка.  

Доказательство. Для циклической группы (a) n-го порядка в силу С16 имеет место сюръек-
тивное отображение  : D(n)→L,  (d) = (an/d). 

Если то для      тогда по С14 получаем, что     –      = nz для z Z. Тогда d2 = kd1 + zd1d2  
 d1. Аналогично из получаем, что      .  

Значит, если то        , то есть   инъективно.  

Пусть – делители числа n. Если      , то для z Z, поэтому                           . Как по-
казано выше,      . Значит,   – изоморфизм.  

Пример. Для решетки <D(24), | > и решетки всех подгрупп циклической группы, порожденной 
элементом a порядка 24, получаем следующие диаграммы Хассе: 
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Рис. 4. Диаграммы Хассе 

 

Приведем признак дистрибутивности решетки подгрупп произвольной группы. 
Теорема 4. Если каждое конечное подмножество группы <G, · > порождает циклическую под-

группу, то решетка <L,   > всех ее подгрупп дистрибутивна.  

Доказательство. Для произвольных элементов x, y   G имеем (x, y) = (z) для некоторого z   G. 
Тогда xy =        = yx для        . Значит, G коммутативна. Поэтому точная верхняя грань подгрупп 
А, В имеет вид А + В = {ab | aA, bB}. 

Пусть A, B, C   . Тогда AB + AC A(B + C). Покажем обратное включение. 
Для произвольного элемента x A(B + C) имеем x = bc A для некоторых b B и c C. По условию 

теоремы (b, c) = (a) для некоторого a  G. Тогда b =    , с = и a = для              . Тогда  

x = bc =                                    =  

                                                         AB + AC, 

поскольку и                      лежат в A. 

Итак, AB + AC A(B + C). Значит, AB + AC   A(B + C) и решетка <L,   > дистрибутивна.  

Так как по свойству С16 любая подгруппа циклической группы циклическая, то в силу теоре-
мы 4 решетка всех подгрупп циклической группы дистрибутивна. Значит, дистрибутивны и все 
изоморфные ей решетки. Таким образом, получаем 

Следствие. Решетка <D(n), | > дистрибутивна при любом пN. 
Итак, дистрибутивные законы верны на всем N, а значит, и на Z. 
Приведенные методы обоснования одного и того же закона не только позволяют подойти к 

проблеме с разных сторон, но и иллюстрируют связь дисциплин «Теория чисел» и «Теория упоря-
доченных множеств». Статья будет полезна студентам математических направлений подготовки. 
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Аннотация. Важность математической подготовки в становлении IT-специалистов отражается в значи-
тельном объеме математических курсов, входящих в соответствующие образовательные программы. Одной 
из первоначальных методических задач выстраивания рабочей программы учебной дисциплины является 
обоснованный отбор учебного материала. Содержание учебных курсов должно соответствовать постоянно 
изменяющимся требованиям, предъявляемым сферой профессиональной деятельности, быть ориентирован-
ным на развитие личности будущего специалиста и обеспечивать его конкурентоспособность на рынке труда. 
В данной статье на основе опыта работы со студентами IT-направлений подготовки, используя некоторые 
результаты приложений алгебраических методов в современных исследованиях теоретической информатики, 
автор анализирует алгебраическую составляющую математических дисциплин, раскрывает ее значимость в 
профессиональной подготовке будущих специалистов. Полученные результаты могут быть использованы для 
конструирования математических курсов указанных направлений подготовки. 

 
Ключевые слова: алгебра, теория чисел, теоретическая информатика, содержание учебных курсов,  

IT-специальности. 

 
Программирование как наука базируется на классических математических дисциплинах, среди 

которых наиболее важную роль играют алгебра и математическая логика. Прикладные IT-спе-
циальности требуют серьезной подготовки в математическом моделировании соответствующей 
предметной области. Разнообразие направлений подготовки, связанных с IT-сферой и реализуемых в 
высшей школе, влечет за собой различные подходы к формированию учебных планов, рабочих про-
грамм и наполнению учебных курсов, при этом возможность создания и использования электронных 
учебных пособий и целых учебных курсов позволяет достаточно гибко варьировать предлагаемый 
учебный материал. В этой ситуации возникает проблема выделения базиса содержания математиче-
ской подготовки, который необходим для формирования профессиональных компетенций IT-спе-
циалистов. Особое значение эта методическая задача приобретает сейчас, когда в РФ ожидается пере-
ход на новые стандарты высшего образования. 

Обоснованием необходимости выделения алгебраической составляющей в математической 
подготовке IT-специалистов является широкое применение алгебраических методов при формали-
зации различных предметных областей, включая информатику. Практическому программированию 
задачи из конкретной предметной области предшествует создание абстрактной модели, для по-
строения которой необходимо владение в том числе алгебраической терминологией. Это позволяет 
ввести подходящие операции и отношения, с помощью которых строится модель, определять их 
свойства, имеющие алгебраическую природу, и впоследствии использовать эти свойства для ана-
лиза модели. Поэтому для студентов, изучающих информатику как основу выбранной специально-
сти, «основным содержанием математической подготовки является овладение средствами иссле-
дования разнообразных математических объектов, их взаимосвязей и преобразований» [3, с. 31]. 
Такая формулировка указывает на важность генерализации знаний, одного из принципов фунда-
ментальности образования, который подробно проанализирован в статье [9], где, в частности, 
утверждается, что «генерализация знаний позволяет обеспечить и лучшее понимание, поскольку 
порождает структуру, которая значительно теснее взаимодействует с новыми знаниями, чем от-
дельные факты» [9, c. 8]. Изучение разделов современной алгебры предоставляет возможность реа-
лизовать этот принцип при построении математических курсов посредством изучения алгебраиче-
ских структур. Подробный методологический анализ этого алгебраического материала можно 
найти в пособии [1]. 

Фундаментальность понятий современной алгебры и их широкое использование в информа-
тике и других областях математики позволяют создавать на основе алгебраических конструкций 
интегральные учебные курсы. Например, в статье [3] автор предлагает использовать многооснов-
ные алгебры как «важный интегрирующий учебно-методический конструкт для программ и курсов 
разных видов и уровней» [6, с. 155].  
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Многоосновные алгебраические системы используются как математические модели абстрактных 
типов данных, например, при решении проблемы автоматизации программирования задач, связанных 
с обработкой больших объемов информации в базах данных. Этот подход в теоретической информати-
ке позволяет найти решение следующих практических задач: создание программного обеспечения, не-
зависимого от операционной среды; переработка программного обеспечения уровня взаимодействия с 
пользователем; описание процессов обработки данных, которые возможно оптимизировать. Идея ис-
пользования алгебраических систем в управлении базами данных описана в статье [4]. Для понимания 
данного подхода к решению практических задач от специалистов требуется знание как минимум основ 
абстрактной алгебры. 

Классическими математическими моделями, используемыми IT-специалистами в различных 
прикладных областях, являются линейные модели, изучением которых занимается линейная алгеб-
ра. Например, многие модели машинного обучения выражаются в матричном виде. Для обработки, 
преобразования данных и оценки таких моделей используются следующие понятия линейной ал-
гебры и теории векторных пространств: обратная и транспонированная матрица; след, определи-
тель, собственные значения и собственные векторы матрицы; размерность объекта или системы; 
векторы и их скалярное произведение, линейная зависимость и другие. Линейные модели, исполь-
зуемые в машинном обучении, можно найти в учебном пособии [8].  

Для изучения основ теории кодирования, раздела теории информации, необходимо владеть 
методами теории конечных полей, которая является важной прикладной частью теории алгебраи-
ческих структур. Теория конечных полей также использует теорию многочленов, тесно связанную с 
развитием классической алгебры. 

В современных методах кодирования и шифрования успешно применяются понятия и мето-
ды алгебраической теории чисел. Например, для обмена данными, верификации источника про-
граммного обеспечения или отправителя данных используется алгоритм криптографии RSA, кото-
рый является базовой частью HTTPS-протокола, широко используемого в РФ. Данный алгоритм ос-
нован на применении двух ключей: открытого и закрытого. Не обсуждая, как работает этот алго-
ритм, остановимся на процедуре получения этих ключей, что является математической задачей, 
состоящей из следующих этапов. 

1. По отобранным случайным образом двум простым числам и вычисляется функция Эйлера 
от произведения этих чисел:           . 

2. Выбирается число  , удовлетворяющее системе условий:         и    (      )   . 

3. Находится число  , удовлетворяющее сравнению:     (        ).  
4. Пары полученных чисел определяют ключи шифрования: – открытый ключ, – закрытый ключ.  
Следовательно, для определения ключей шифрования в RSA необходимо знать следующие 

факты из теории чисел: простое число, взаимно-простые числа, наибольший общий делитель 
(НОД), функция Эйлера и ее свойства, отношение сравнимости по модулю. Кроме того, нужно уметь 
проводить генерацию простых чисел, вычислять функцию Эйлера, находить НОД пары чисел (алго-
ритм Евклида), решать сравнения с одной переменной, проводить вычисления, используя модуль-
ную арифметику, в том числе для процедуры шифровки и дешифровки информации. Знание основ 
теории чисел также дает понимание идеи, на которой основан данный алгоритм шифрования: 
сложность задач дискретного логарифмирования и факторизации произведения двух больших про-
стых чисел. Подробное описание математической основы этой идеи шифрования можно найти в 
учебных пособиях по теории чисел, рекомендуемых для высшего образования, например [7]. 

Значимость изучения алгебраического материала, на наш взгляд, состоит в том, что на его ос-
нове создается база идей, применяемых при решении разнообразных прикладных задач, в том чис-
ле задач информатики. Это выявление структуры объекта относительно операций над этим объек-
том; понимание тождественности, изоморфности, гомоморфности объектов; арифметизация объ-
екта; возможность описания объекта на основе различных систем оценок; получение новых объек-
тов с помощью алгебраических методов, таких как подструктура или фактор-объект; выстраивание 
иерархии объектов; применение наиболее простых или наиболее адекватных поставленной задаче 
преобразований с объектами.  

Например, изучение кольца классов вычетов не только дает пример факторизации кольца це-
лых чисел, но и позволяет продемонстрировать возможность замены процедуры в общем виде беско-
нечного перебора на перебор конечный – ситуация, которая встречается во многих прикладных зада-
чах. Знакомство с понятиями базиса и системы образующих в теории векторных пространств пока-
зывает, как бесконечное число объектов можно однозначно описать минимальным, возможно конеч-
ным и независимым друг от друга набором параметров, а возможность перехода к другому базису – 
это возможность изменения системы параметров или оценок, описывающих объект.  

https://ru.wikipedia.org/wiki/%D0%A4%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F_%D0%AD%D0%B9%D0%BB%D0%B5%D1%80%D0%B0
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Включение алгебраического материала в математические курсы имеет и методологическое 
значение: знакомство с различными алгебраическими структурами дает современное представле-
ние о содержании математики как науки. Изучение различных алгоритмов решения алгебраиче-
ских задач, применяемых в теоретической информатике, а также их обоснование формирует алго-
ритмическую культуру обучающихся. Задачи, имеющие известный алгоритм решения, можно ре-
шать с помощью систем компьютерной математики. Их использование в процессе обучения позво-
ляет освободить время для более глубокого изучения материала, а также дает возможность разно-
образить предлагаемый учебный материал, включая в него задания творческого характера, что 
формирует более конкурентоспособного специалиста.  

Итак, изучение основ современной алгебры и теории чисел позволяет решать важные задачи 
в профессиональной подготовке IT-специалистов, что необходимо учитывать при разработке обра-
зовательных программ и учебных планов соответствующих направлений подготовки. Объем статьи 
не позволяет привести большее число примеров, но можно сделать вывод, что к алгебраической 
составляющей математической подготовки IT-специалистов следует как минимум отнести: линей-
ную алгебру, включающую теорию векторных пространств; отдельные разделы теории чисел; тео-
рию алгебраических и порядковых структур; теорию многочленов.  

Отметим, что в зависимости от реализуемой образовательной программы и уровня подготов-
ки студентов данное содержание можно оформить в виде отдельного курса алгебры и теории чисел 
или распределить по разным учебным математическим дисциплинам. Как математическую основу 
элементы алгебры и теории чисел можно включать в содержание специальных профессионально 
ориентированных учебных курсов, таких как, например, теория автоматов, теория кодирования. 
Отдельные темы, имеющие прикладное значение, могут стать основой факультативов или частью 
самостоятельной работы для подготовки к специальным курсам, например [2, 5]. В качестве приме-
ра приведем также курс математики, разработанный преподавателями кафедры прикладной мате-
матики и информатики ВятГУ [10]. 
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Abstract. The importance of mathematical training in the development of IT specialists is reflected in the signif-
icant volume of mathematical courses included in the relevant educational programs. One of the initial methodological 
tasks of building a work program for an academic discipline is the reasonable selection of educational material. The 
content of the training courses should meet the constantly changing requirements of the field of professional activity, 
be focused on the personal development of the future specialist and ensure his competitiveness in the labor market. 
Based on the experience of working with students of IT fields of study, using some results of applications of algebraic 
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methods in modern research of theoretical computer science, this article analyzes the algebraic component of m athe-
matical disciplines and reveals its importance in the professional training of future specialists. The results obtained can 
be used to design mathematical courses in these areas of study. 
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